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Abstract 

Randomized experiments ensure equal opportunities but could generate unequal outcomes by 
treatment status, which can be socially costly. This study demonstrates a sequential 
intervention to conduct rigorous impact evaluation and subsequently to mitigate 
‘“experiment-driven’ driven” inequality, using Cote d’Ivoire as a case. Specifically, control 
farmers were initially restricted from exchanging information with treated farmers, who 
received rice management training, to satisfy the stable unit treatment value assumption. We 
then encouraged information exchange between the two groups of farmers one year after the 
training. We found positive training effects, but initial performance gaps created by our 
randomized assignment disappeared over time because of information spillovers and, hence, 
eventually control farmers also benefitted from our experiment. 
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1. Introduction  

Development, educational, and other social programs have long been chosen and implemented 

based on folk wisdom without sufficient scientific evidence. A recent surge in the use of 

randomized controlled trials (RCTs) in empirical studies of economics, particularly of 

development economics, has substantially contributed to a better understanding of what works 

and what does not to improve the welfare of the poor. Examples include conditional and 

unconditional cash and asset transfer (Schultz 2004; Banerjee et al. 2015b; Bastagli et al. 2016; 

Kabeer and Waddington 2015), microfinance (Karlan et al. 2014; Banerjee et al. 2015a), 

preventive health measures (Dupas 2011; Kremer and Glennerster 2011), educational inputs 

(Kremer and Holla 2009; Evans and Popova 2016), and agriculture (de Janvry et al. 2017).  

RCTs intentionally, though randomly, create a group of people who receive a treatment 

and another group who do not. Such an approach has been justified because it provides a more 

credible estimate of the impact of the intervention than other available, sophisticated 

econometric methods. Since our preconceptions about the effectiveness of development 

practices are often biased, rigorous evidence generated by RCTs helps select which practice 

should be scaled-up to a wider range of the population. This holds true especially when external 

validity is carefully evaluated from multiple RCTs. Furthermore, RCTs are justified because 

everyone in a society cannot receive the treatment simultaneously, given limited resources, but 

RCTs, if properly executed, could provide equal opportunities to all subjects in the targeted 

population. This ex-ante equality of opportunities seems to match the sense of fairness of many 

researchers and plays an important role in avoiding their ethical dilemmas.  

However, RCTs might generate ex-post inequality in outcomes to the extent that the 

implemented program has positive and significant impacts. Moreover, such inequality could 

persist for a long period of time. For example, recent studies on a pioneering conditional cash 

transfer (CCT) program in Mexico, Progresa, show that those with more time exposed to CCTs 
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are significantly better off even more than 10 years after the program (Kugler and Rojas 2018; 

Parker and Vogl 2018). Inequality triggered by RCTs could be eliminated relatively quickly if 

RCTs are designed to roll out so that everyone can eventually receive the same treatment. Yet, as 

is demonstrated by Progresa, which was precisely designed to do so, this is sometimes imperfect. 

Alternatively, RCT-triggered inequality may be mitigated if benefits are allowed to spread from 

treated to control groups by such means as social learning or positive spillovers (Miguel and 

Kremer 2004; Kremer and Miguel 2007; Oster and Thronton 2012). Although the existence of 

positive interpersonal spillover effects is desirable in the real world, it is generally recused in the 

RCT setting because it violates the stable unit treatment value assumption (SUTVA), without 

which the unbiased impact of implemented programs cannot be estimated. Thus, spillovers tend 

to be considered a threat to identification rather than a driver to reduce otherwise persistent 

inequality in experimental settings. As a result, researchers who initiate RCTs often prefer the 

absence of spillovers and tend to overlook inequality generated by “researcher-tailored” RCTs or 

intentionally leave such inequality unattended to observe longer-term impacts.  

In this study, we implement a unique field experiment in collaboration with 295 

rice-growing farmers in Cote d’Ivoire to explore (1) whether management training for rice 

cultivation provides the intended positive impacts, such as the adoption of recommended 

agronomic practices as well as improved rice yield and profits, and (2) whether any generated 

inequality from our intervention could be eliminated later by encouraging treated farmers to 

disclose new knowledge acquired during the training to control farmers. The first objective 

echoes other RCTs designed not to cause spillover effects, and the second objective deviates 

from their common practices. 

We take up a case study of rice farming in Cote d’Ivoire because, like other West African 

countries, rice is one of the major staple foods in this country and its consumption has increased 

rapidly in recent years, exceeding the domestic production. The government has tried to increase 

rice yield to sustain food security and save foreign exchange reserves. The adoption rate of 
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modern inputs, such as improved seeds and chemical fertilizer, is higher in Cote d’Ivoire than in 

other rice-growing countries in Sub-Saharan Africa (SSA), owing to past training provided by 

local governmental and international organizations such as AfricaRice (formerly known as 

WARDA [West Africa Rice Development Association]), whose headquarters was originally 

located within the country and is now there again.1 However, several recommended agronomic 

practices, including straight-row transplanting, that have proven to boost rice yield in tropical 

Asia as well as other SSA countries have not been adopted widely (David and Otsuka 1994; 

Otsuka and Larson 2013, 2016). There is thus room for management training to improve the 

performance of rice production. 

Japanese experts offered a short technical training course in 2015 in collaboration with 

local extension agencies to a sub-sample of farmers randomly selected from eight production 

sites located in two major rice-growing regions, Bellier and Gbeke. To mitigate noncompliance, 

such as the participation of ineligible farmers, local counterparts checked the attendance of 

participation in field training every time it was implemented.  

We conducted household surveys three times at the baseline before the training (January 

2015 to May 2015), the mid-line one year after the training (March 2016 to May 2016), and the 

end-line two years after the training (March 2017 to May 2017). During the initial experimental 

phase between the baseline and mid-line survey, treated farmers were asked not to transmit 

information taught in the training and control farmers were requested to refrain from asking 

treated farmers for agricultural advice. Both treated and control farmers were convinced that if 

they met these requirements they could obtain precise and valuable knowledge about the 

effectiveness in their settings of the technological package taught in the training. After the one 

year of observation, we relaxed the restriction and turned to promoting spillovers. Using these 

three-year panel data, we examine the evolution of both intention-to-treat (ITT) and 

                                            
1 Because of political instability in Cote d’Ivoire, the headquarters of AfricaRice was temporarily 
moved to Cotonou, Benin from 2005 to 2015.  
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treatment-on-the-treated (TOT) effects of the training, with the attendance rate instrumented by 

the random assignment of treatment status for the latter.  

A focus on agricultural training and technology is suited to our research purpose because 

it has been an area where spillovers likely occur through social learning (Foster and Rosenzweig 

1995; Munshi 2004; Bandiera and Rasul 2006; Conley and Udry 2010). Most previous studies 

share the view that training millions of small farmers is a significant challenge in practice and 

farmer-to-famer training or social learning, e.g., farmer field schools (FFS), is potentially more 

cost effective in the diffusion of agricultural technologies (Guo et al. 2015; Emerick et al. 2016; 

Mekonnen et al. 2018; Ben Yishay and Mobarak 2018; Nakano et al. 2018).  

Nevertheless, there is little consensus as to the relative effectiveness of direct training by 

extension workers and learning from peer farmers. To the extent that social learning is less 

effective than direct training to counter information failures, inequality generated by an 

experiment on agricultural training may not easily cease even after information dissemination 

from treated to control farmers is encouraged. Feder et al. (2004), Tripp et al. (2005), and 

Kondylis et al. (2017) find that directly trained farmers significantly increase the adoption of the 

new technology, but their behavior has limited impacts on other farmers. On the other hand, 

Krishnan and Patnam (2014) demonstrate that while the initial impact of extension agents is high, 

learning from neighbors plays a more important role than direct training by extension agents in 

the adoption of the new technology over time. Similarly, Nakano et al. (2018) show that directly 

trained farmers perform better initially, but other farmers can catch up with them later through 

farmer-to-farmer training. Finally, Genuis et al. (2014) suggest that both extension services and 

social learning are strong determinants of technology adoption, and the effectiveness of each of 

the two informational channels is enhanced by the presence of the other. These contradicting 

findings suggest that the nature and strength of peer effects is not readily generalizable and 

should be evaluated in each specific context (Sacerdote 2014). 
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Our main findings are summarized as follows. We find that while the adoption rates of 

improved rice management practices are generally high even at the baseline, the treated farmers 

are more likely to adopt improved practices, such as seed selection, transplanting in rows, and 

field leveling, which is required for uniform crop maturity, within a year after the training. The 

higher adoption rates of those recommended agronomic practices lead to improved rice yield 

and quality as well as increased income per hectare among treated farmers. Once all farmers are 

encouraged to exchange information later, productivity gaps between treated and control farmers 

narrow sharply. It may seem possible to interpret this convergence as a sign of short-lived 

impacts of training where trained farmers drop new practices and return to the traditional ones. 

However, we observe that trained farmers continue to adopt the improved agronomic practices 

two years after the training, and control farmers follow them. Our detailed network analysis 

based on a dyadic regression further reveals that information flow from treated to control 

farmers is less active than between control farmers (a reference group) a year after the training 

but becomes more active two years after the training. Meanwhile, information exchange is more 

active in the first place between treated farmers than between control counterparts. These results 

together suggest that farmers followed our guidance not to exchange agricultural information 

within the initial experimental phase, which enables us to rigorously evaluate the short-term 

impact of training. Yet, once such a restriction is abolished and information exchange is 

encouraged, control farmers could successfully catch up with treated farmers through social 

learning. These results imply the importance of social learning not only for the wider diffusion of 

agricultural technologies but also for reducing otherwise persistent inequality in experimental 

settings.  

To the best of our knowledge, this is the first study that attempts to impose SUTVA in the 

initial experimental phase but intentionally relaxes it later. Although the existing RCTs pay due 

attention to ethical concerns, to date, most studies seem to put too much emphasis on identifying 

the efficacy and effectiveness of implemented projects as well as mechanisms underlying the 
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positive, negative, or negligible impacts. We do not deny the importance of those studies to fill 

the significant knowledge gaps. However, it might also be valuable to build in a mechanism to 

allow control groups to catch up with treated ones and rectify inequality generated by an 

experiment. By reducing the RCTs’ potential social cost and improving the welfare of the entire 

sample, the RCT is likely to be more widely accepted. This study demonstrates that such design 

is possible by encouraging social interaction among subjects once the intended intervention 

proves to provide positive impacts.  

The rest of the paper is organized as follows. Section 2 explains the study setting, 

sampling framework, and experiment design, and examines the summary statistics of our sample. 

Section 3 explains our estimation strategy on the dynamic impact of training and discusses 

estimation results. Section 4 conducts a detailed analysis of the information network and 

explains the estimation results. Section 5 concludes the study.  

 

2. Survey and Experimental Design  

2.1 The Study Area 

The study took place in the Bellier and Gbeke regions, near the capital city of Yamoussoukro, in 

Cote d’Ivoire. The two regions were selected under a bilateral official development assistance 

(ODA) program between the Ivoirian and Japanese governments. Japanese technical experts 

were dispatched from 2014 to 2018 to improve domestic rice production and increase the 

quantity of marketed rice through the ODA scheme organized by Japan International 

Cooperation Agency (JICA). There are a total of 107 production sites suitable for rice 

production within those two regions, which are all located in the lowlands. Some production 

sites have sufficient access to irrigation water and are able to cultivate rice twice in a good year. 

Others are in low-humidity zones (called bas-fonds), dependent on rainfall. The main rice 
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cultivation season is roughly from July to December. If irrigated, a second cycle starts around 

January/February. When water is insufficient, farmers produce other crops, such as yams and 

peanuts, or leave the paddy field to fallow. Since these two regions are agro-climatically more 

favorable for rice production than other areas in the country, farmers have received various rice 

cultivation trainings provided by international donors, including JICA, World Bank, and 

AfricaRice, as well as local extension agencies, including Agence Nationale d'Appui au 

Développement Rural (ANADER).  

Out of 107 sites, two production sites were initially selected for the JICA project in 2014. 

Thereafter, the target area was expanded every year to cover a total of 26 sites until 2018. This 

study relies on the data from eight production sites selected in 2015. To choose our study sites, 

we closely collaborated with technical experts. Admittedly, selection was not completely 

random because technical experts have a target to cover 1,500 hectares of land within the 

five-year project period. Thus, the study sites are relatively larger in operational size than the 

other remaining sites in the Bellier and Gbeke regions. Since the impacts of training may 

potentially vary by agro-ecological and institutional conditions, we classify all potential 

production sites into four types depending on the accessibility to irrigation and the existence of 

prior rice training: (Type 1) with at least a partial irrigation facility and experience in training; 

(Type 2) without irrigation facilities but with experience in training; (Type 3) with at least a 

partial irrigation facility but no (or inadequate) experience in training; and (Type 4) with neither 

an irrigation facility nor experience in training. We then selected two of each type of site, 

generating a sample of eight production sites in total.  

 

2.2 Sampling Structure and Experimental Design 

Prior to the experiment, we had meetings with farmers belonging to agricultural cooperatives in 

each selected site. The objective of the meeting was to explain our implementation plan and 
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obtain consent from farmers. Although technical experts had experience in rice production 

training in Cote d’Ivoire and recommended management practices for lowland rice cultivation 

were fairly well established in experimental fields, we felt it was important to evaluate the 

training impact on rice production performance through an RCT because it is common to 

observe differences between on-farm and on-station results. We also wondered whether 

management practices taught in this most recent training were ineffective for those who had 

already received similar training in the past or those whose productivity was already close to the 

production possibility frontier.  

Based on an agreement with technical experts, we explained our plan to farmers as 

follows: (1) We would like to conduct a social experiment to assess the impact of training and 

ask farmers to cooperate with us; (2) farmers are randomly grouped into two groups, with one 

eligible to receiving the training offered by the JICA experts while the other is expected to apply 

the best management practice they had access to; (3) all farmers including control farmers are 

provided with necessary inputs, such as improved seeds and chemical fertilizer, on credit; (4) the 

experimental phase lasts one year during which farmers belonging to different groups are 

expected not to exchange information about techniques and management practices taught in 

training. Specifically, we request treated farmers not to transmit information taught in the 

training and controlled farmers to refrain from asking treated farmers for agricultural advice; (5) 

before and after the experiment, we will conduct household surveys for impact evaluation; (6) if 

farmers follow our guidance and treated farmers do not transmit information on rice production 

management, we can obtain reliable estimates of the impact of training; (7) after the impact 

assessment, we will share which technology (i.e. conventional practice vs. one taught in 

training) is found to be superior; and (8) after the experimental phase, farmers are encouraged to 

share information to provide farmer-to-farmer training.  

While unequal treatment during the experimental phase could be a source of tension 

between treated and control farmers, we attempted to make them feel neither lucky nor unlucky 
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in their treatment status. Rather, we emphasized that once we know which technology is better, 

everyone can benefit from such knowledge and that the success of this social experiment 

depends crucially on whether farmers exchange information or not within one year after the 

training. This sort of explanation seems to ease tensions, and most farmers understood the 

purpose of this experiment and showed strong willingness to cooperate with us.2  

After obtaining consent, we collected individual member lists from each agricultural 

cooperative. We attempted to randomly select about 100 farmers from each type specified above. 

However, since the total number of farmers in Type 3 was only around 50, we overweighed Type 

4 so that the number of farmers with and without past training experience totalled roughly 200. 

Out of 414 farmers on the shortlist, 295 households were found to be active rice producers who 

cultivated rice at least once in the preceding year, resulting in 83 farmers in Type 1, 73 farmers in 

Type 2, 39 farmers in Type 3, and 100 farmers in Type 4. These 295 households constitute the 

primary sample in this study. We conducted the baseline survey with those households from 

January 2015 to April 2015. The data pertain to household demographic characteristics, 

accessibility to land and its tenure status, details of rice production and other income-generating 

activities, and household asset holdings.  

We then assigned eligibility to participate in the training. One half of sample households 

were randomly selected as a treatment group and the other half as a control group in each site. 

Randomization was implemented at the farmer level within each site. Technical experts provided 

a short classroom training to extension agents of ANADER and three key farmers who were 

selected from each site. Those extension agents and key farmers in turn offered on-site training 

to eligible farmers under the supervision of technical experts. This training consisted of (a) land 

preparation, including land levelling, (b) water control, including canal construction and 

maintenance, (c) seed selection and incubation, (d) fertilizer and herbicide application, and (e) 

                                            
2 Some cooperatives voluntarily created rules to prevent control farmers from learning or adopting the 
agricultural techniques taught in the training. 
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harvest and post-harvest management. To mitigate noncompliance, particularly the participation 

of the control farmers, local counterparts visited every session of the training and recorded who 

participated in it. The on-site training proceeded gradually to meet the actual rice cultivation 

cycle and, in total, it was held at least six times from June to November 2015 to cover the key 

practices. We then conducted the follow-up surveys twice, the first soon after the training 

(March 2016 to May 2016) and, the second two years after the training (March 2017 to May 

2017). During the 2015–2016 seasons, however, there was a severe lack of rainfall. Thus, sample 

attrition is serious as will be discussed below.  

 

2.3 Descriptive Statistics and Balancing Test 

Table 1 presents the composition of our sample plots. We have a total of 424 plots from 295 

households in the baseline survey. Of those, 333 plots were rice planted in the main season. The 

number of sample plots in the main season dropped sharply to 193 in the mid-line and further to 

168 in the end-line survey because of the lack of rainfall. Rice cultivation was difficult in these 

years even for those with access to irrigation because of insufficient water. Therefore, second 

cropping was almost impossible for most farmers. As a result, the number of plots cultivating 

rice in the sub-season declined substantially from the baseline survey. Production sites without 

irrigation, that is, Types 2 and 4, were more severely affected by rainfall shortages, and the 

number of attrited sample farmers from these groups is larger than from the others.  

Table 2 shows the balance test on baseline characteristics for the full sample and 

sub-sample in the main season. Households with missing values are dropped. We conducted a 

t-test of the equality of means between the treated and control farmers and joint significance 

F-tests in columns (3) and (6).  

On average, households are large (about nine persons), headed by a male in the mid-40s 

with minimal or no formal education. The average plot size is relatively small—approximately 
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0.5 hectare. Although the treatment status was randomized, the difference in the plot size 

between treatment and control farmers is statistically significant for both full and sub samples. 

Most land was operated under owner cultivation. If rented, it was generally under a fixed-rent 

contract. Attendance rates at the training was about 42% among treated farmers, while it was 

almost null (only two cases) among control farmers, indicating that almost all control farmers 

adhered to our request and did not participate in the training. We conducted the joint significant 

test except for the attendance rate, demonstrating that we reject the zero-null hypothesis for the 

full sample, while we fail to reject it for the sub-sample in the main season. Given that baseline 

covariates are balanced only in the main season and that the second crop likely involves 

self-selection, we focus on the main season crop in the subsequent analysis.  

Table 3 compares the baseline characteristics of attrited and non-attrited samples with a 

t-test of the equality of the mean between the two and the associated joint significance F-test. 

The attrition rate differs notably by the accessibility of irrigation, and the share of the sample 

from irrigation sites (i.e., Types 1 and 3) is significantly larger among non-attrited samples. 

Furthermore, most key observable characteristics are statistically significantly different between 

attrited and non-attrited samples: on average, attrited samples are more likely to be 

female-headed with less education, larger in household size but smaller in plot size, and more 

likely to own rice plots. The joint significance test shows that the zero-null hypothesis is strictly 

rejected, implying that attrition is non-random. This non-random sample attrition is a potential 

threat to our statistical inference, which should be addressed in the econometric analysis.  

Before discussing our empirical strategy in detail, Table 4 presents the changes in 

outcome variables of interest regarding rice management practices and productivity of 

non-attrited samples over time. We again show the results of t- and F-tests for treated and control 

plots. In addition, columns (10) and (11) present an unconditional difference-in-differences 

(DID) regression estimate of the treatment effect (i.e. the difference in the time trend between 

treated and control plots).  
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The adoption of recommended management practices was generally high even in the 

baseline (Panel A). Because of its proximity to AfricaRice, the adoption of the modern variety of 

rice was complete and uptake rates reached 100%.3 The use of chemical fertilizers was also 

remarkably high by SSA standards: on average, more than 200 kg/ha of fertilizer, such as NPK 

and UREA, were applied. In addition to these external inputs, the adoption of improved 

agronomic practices helps boost rice yield in SSA (Otsuka and Larson 2013, 2016). Water 

canal/drainage construction and maintenance are important to manage water levels in rice fields 

during the growth period, while levelling is crucial to reduce the amount of water wasted by 

uneven pockets and to promote even growth of rice plants. Straight-row planting can be adopted 

to facilitate other complementary management practices such as hand or rotary weeding and 

even the application of fertilizers, herbicides, or insecticides. In our sample, 75–90% of plots had 

levelled fields and constructed/repaired water canal/drainages in the baseline. Most sample 

farmers selected better seeds by water or winnowing, whereas transplanting in row was less 

common.  

Panel B shows the rice productivity and profitability of sample plots. Gross production 

value per hectare is computed by multiplying the rice yield (1000 kg/ha) with the price received 

(kg/CFAF).4 Rice income per hectare is equal to the gross production value minus paid-out costs, 

including land rent, irrigation fees, costs of purchased chemicals, and machinery rental, divided 

by the plot size. Profits per hectare are equal to rice income minus imputed family labor costs, 

divided by the plot size. To impute family labor costs, we used the typical prevailing hired wage 

rate for transplanting in each village. The average yield exceeds 3.4 tons/ha which is 

significantly higher than the average of other countries in SSA of just above 2 tons/ha (Otsuka 

and Larson 2016). The average gross output value, rice income, and profits per hectare were 

                                            
3 The vast majority of farmers used WITA-9, a high-yielding variety that is tolerant to rice yellow 
mottle virus and iron toxicity with a maturity period of about 110 days. 
4 1 USD is equivalent to 563 CFAF as of January 2015.  
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about 600 thousand CFAF (or approximately 1,065 USD), 405 thousand CFAF (or 719 USD), 

and 320 thousand CFAF (or 568 USD), respectively.  

The table also shows that while there is no statistically significant difference in the 

baseline adoption rate of recommended practices, treated farmers are more likely to adopt 

levelling, canal/drainage construction/repairs, and transplanting in row at the time of the 

mid-line survey. Although they tend to adopt those practices more than control farmers in the 

end-line, the unconditional DID estimate shows that the incremental adoption rate between the 

mid- and end-line is higher for control farmers. On the other hand, all outcome variables but rice 

yield are not significantly different between the treated and control samples in the baseline, and 

no outcomes are significantly different in the mid-line and end-line surveys. However, the 

unconditional DID estimates show that treatment plots increase rice yield and revenue between 

the baseline and mid-line more than control plots, while the reverse was true between the 

mid-line and end-line surveys.  

These results suggest that the treated farmers improved their rice management practices 

and performed better in the first year after the training when information exchange was restricted, 

but control farmers caught up with treated farmers once information sharing was encouraged 

presumably because of spillover effects.  

 

3. Dynamic Impacts of Training 

3.1 Estimation Strategy 

To identify the causal relationships between the provision of training and outcomes of interest, 

we estimate intention-to-treat (ITT) and treatment-on-the-treated (TOT) effects. We first 

examine the average impacts of all production sites (i.e., Types 1–4), allowing the impacts to 

vary across time. We are particularly interested in whether the training brings intended positive 



 

15 
 

impacts in the first year after the training with the gap generated by the experiment decreases 

over time through spillovers in the next year. Following McKenzie (2012), we employ an 

analysis of covariance (ANCOVA) model in the form of:  

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛾𝛾𝑌𝑌𝑖𝑖𝑖𝑖0 + 𝛽𝛽1𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝐷𝐷𝑖𝑖𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑖𝑖 × 𝐷𝐷𝑖𝑖𝑖𝑖) + 𝑋𝑋𝑖𝑖𝑖𝑖0𝛿𝛿 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖  (1), 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖0 are the post- and pre-treatment outcome variables of plot i in production 

site j at time t (i.e., either mid-line or end-line) and time 0 (i.e., baseline); 𝑇𝑇𝑖𝑖 is a dummy variable 

for the end-line data; 𝐷𝐷𝑖𝑖𝑖𝑖  is a dummy variable equal to one if a household is eligible to 

participate in the training (ITT estimate) or a continuous variable for the attendance rate of 

training, instrumented by the treatment status (TOT estimate)5; 𝑋𝑋𝑖𝑖𝑖𝑖0 is a set of baseline control 

variables; 𝜇𝜇𝑖𝑖 is the time-invariant fixed effect at the production site; and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the unobserved 

error term. The parameters of interest are 𝛽𝛽2  and 𝛽𝛽3 . The former captures the short-term 

impacts of training under the imposition of the SUTVA, while the latter represents the mixture of 

the longer-term training impacts and spillover effects when the SUTVA is relaxed. We note that 

the pure training impact is estimable only in the short-term. 

As outcome variables, we focus on the use of chemical fertiliser (kg/ha), the adoption of 

seed selection by water or winnowing (=1), levelling (=1), canal/drainage construction/repairing 

(=1), and transplanting in row (=1) as well as rice yield (ton/ha), gross output value (‘000CFAF), 

rice income (‘000CFAF), and rice profit (‘000CFAF) per hectare. When the outcome is binary, 

we apply a liner probability model. As baseline control variables, we include household size, 

household head’s characteristics (including age, gender, and years of education), plot 

characteristics (including parcel size and tenure status dummies), and the logged value of 

household assets at the baseline survey. We cluster all standard errors within production sites.  

                                            
5 Strictly speaking, this is the local average treatment effect (LATE). However, because almost no 
control farmers attended the on-site training, our estimate can be virtually considered TOT (Angrist and 
Pische 2008).  
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The random assignment of treatment status should make the treatment and control 

groups similar in expectation. Therefore, including controls in regressors and/or applying the 

ANCOVA model would not affect the consistency of the estimated treatment effects. However, 

the inclusion of additional controls is expected to lend greater credibility to internal validity of 

the estimates when some baseline imbalance exists. Thus, we prefer and present the results with 

baseline controls. Still, the estimated parameters may be biased due to non-random sample 

attrition. To adjust for that, we use the inverse-probability weighting method, suggested by 

Wooldridge (2010). Specifically, we run the probit regression to compute the predicted 

probability of non-attrition and use the inverse of it as weights in the main equation. This 

first-stage probit regression result is presented in Appendix 1.  

 

3.2 Estimation Results 

Table 5 shows the estimation results for the dynamic impacts of management training on rice 

productivity and profitability. For the sake of brevity, coefficients on control variables are 

suppressed.  

It is clear that training has positive and significant impacts on rice productivity by the 

mid-line, with the rice yield increasing by 0.75 ton/ha, gross output value per hectare by 140 

thousand CFAF, and rice income per hectare by 103 thousand CFAF. These improvements 

correspond to 20%, 24%, and 29% of control means, respectively, suggesting that management 

training was effective in our context.6 This improvement in productivity, however, does not lead 

to an increase in profits. As we will see, this is presumably because trained farmers test a larger 

number of improved management practices than control farmers, who require more family labor 

inputs. Qualitatively similar results are observed for TOT estimates. The fact that we see 
                                            
6 According to experienced agricultural experts, impacts of recommended management practices on rice 
productivity are generally larger when there is sufficient water. Thus, our estimates could be considered 
the lower bound of the impacts that would be realized in a year with normal rainfall.  
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quantitatively larger magnitudes of impacts in TOT than ITT estimates suggests that actual 

training participation rather than its simple eligibility is important to improve production 

performance.  

Notably, the coefficient estimates on the interaction term are negative and significant for 

rice yield and gross output value per hectare. This indicates that the improvement of 

performance among treatment groups from the mid- to end-line is lower than control groups. 

The Wald test shows that we cannot reject the null hypothesis that the total training effect is zero 

in most specifications, implying that treated farmers are no better than control farmers by the 

end-line. We can interpret this negative interaction term, 𝛽𝛽3, as reflecting either the short-lived 

training effects or the existence of spillover effects. If training impacts do not last long, however, 

we would observe some signals, such as the declining adoption rate of improved management 

practices among treated farmers. We did not observe clear disadoption patterns in Table 4. Thus, 

this finding seems consistent with the operation of a mechanism wherein control farmers 

improve their performance by learning from treated farmers after the SUTVA is relaxed. 

Table 6, which shows estimated impacts of training on the adoption of improved 

agronomic practices, also provides supportive evidence of spillovers. When information 

exchange between treated and control farmers was restricted during the year after the training, 

the positive training impact on the adoption of improved management practices, such as 

levelling, canal/drainage construction/repairing, and straight-row transplanting is observed 

among treated farmers (ITT estimate) and training participants (TOT estimate). However, once 

the restriction was lifted two years after the training, control farmers successfully caught up with 

treated farmers in the adoption of recommended practices, as reflected in the negative and 

significant coefficients on the interaction term, 𝛽𝛽3.7 The Wald tests also confirm that in most 

outcomes we fail to reject the hypothesis of zero training impact in the longer term.  

                                            
7 Since the same amount of fertilizer is provided to both treatment and control groups in the 
experimental phase, it seems plausible to observe insignificant effects of training on this outcome.  
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Taken together, we confirm that training has positive impacts in the short-term not only 

on the adoption of improved rice management practices but also on rice productivity. Our further 

intervention encouraging farmers to spread information contributes to reducing the generated 

gap.8 In order to ascertain whether this result reflects spillovers, we will examine in more detail 

whether social networks actually mediate the information spillover in Section 4.9  

 

3.3 Heterogeneous Treatment Effects 

Before moving on to the detailed network analysis, we investigate the heterogeneous treatment 

effects by the type of production site. The purpose of this analysis is to determine whether this 

training had negligible impacts on those who had already received similar training in the past or 

those whose production was already close to the production possibility frontier. Since the 

introduction of multiple interaction terms and multiple endogenous variables makes 

interpretation complex, we estimate time-invariant ITT effects by incorporating the interaction 

term only between the treatment and type dummies. We thus ignore the differentiated dynamic 

impact of the training across production sites over time and their corresponding TOT estimates.  

 The estimated results in Table 7 show that the training had positive impacts on the 

adoption of recommended rice management practices and rice productivity, including rice yield, 

the use of chemical fertilizer per hectare, and the application of levelling. Contrary to our 

expectation, statistically significant impacts prevail, especially for Type 1, where rice cultivation 

environments are most favorable, and farmers have sufficient experience with training in the 

                                            
8 Although the number of our outcome variables is not so large, one may wonder if we find false 
positives because of testing multiple hypotheses. To address this concern, we compute false discovery 
rate sharpened q-values corrected multiple testing, following the Benjamini-Kreieger-Yekutieli method 
(Bendamini et al. 2006). All outcome variables that show statistically significant effects in Tables 6 and 
7 remain significant at 10% or lower.  
9 If spillovers exist, the average performance of control groups would improve over time, which could 
be reflected in  𝛽𝛽1 (the end-line dummy)>0. 𝛽𝛽1 is positive for most outcome variables, and statistically 
significant for the adoption of canal/drainage construction/repairing and straight-row planting for TOT 
estimation, further supporting our interpretation in favor of the existence of spillovers.  
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past. Those who belong to Type 4, for which production environments are least favorable and 

training experience is scant, do not learn much from training, as indicated by the negative and 

significant coefficient estimates on the treatment dummy interacting with the type dummy for 

most specifications. This might show the low expected returns of improved rice production 

methods in rain-fed areas where water control is difficult, which was also the case in Asia (David 

and Otsuka 1994). 

 

4. Spillover Effects 

4.1 Information Network Analysis 

Having shown the treatment effects across time and production sites, we now examine whether 

social networks actually mediate information spillover from treated to control farmers, using the 

detailed learning link data.  

A fundamental empirical challenge on this topic is how to correctly specify one’s social 

network. Asking respondents about their social network by arbitrarily setting a cap on the 

number of links may result in truncation bias, while asking an open-ended question tends to 

capture only the strong links, ignoring the weaker ones (see, for example, Maertens and Barrett 

[2013] for a thorough discussion of potential bias in empirically eliciting the true social network 

structure). To address this concern, we exploit a “random matching within sample” technique to 

elicit social networks, following, among others, Conley and Udry (2010), Maertens and Barrett 

(2013), and Mekonnen et al. (2018). More specifically, we match each sample respondent with 

six other survey respondents randomly drawn from the sample in the same production sites and 

ask details of the (non)existence of information exchange about agronomic practices between 

sample farmers. To examine the differential roles played by treatment and control peers, we 

select three matches from treated farmers and the other three from control farmers. To capture 
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changes in the network of interactions over time, we collected the learning link data in both the 

mid- and end-line surveys. As Santos and Barrett (2008) demonstrate, the 

random-matching-within-sample method recovers the underlying social network structure more 

reliably than other available methods, such as a network-within-sample method in which each 

respondent is asked about his/her link to every other household in the sample. 

We then run a dyadic regression for those who know their matches to characterize the 

flow of information about management practices across farmers over time.10 Formally, let 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 

be equal to one if a respondent farmer i asks farmer j (conditional on i knows j) for advice on 

agronomic practice, such as land preparation, transplanting, and fertilizer application, at time t.11 

We explore the correlates of learning links by including attributes of a household i and j as:  

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 =δ + γTt + α1𝐷𝐷𝑖𝑖𝑖𝑖1+α2𝐷𝐷𝑖𝑖𝑖𝑖2 + α3𝐷𝐷𝑖𝑖𝑖𝑖3+β1(𝐷𝐷𝑖𝑖𝑖𝑖1 × Tt) + β2(𝐷𝐷𝑖𝑖𝑖𝑖2 × Tt) + β3(𝐷𝐷𝑖𝑖𝑖𝑖3 × Tt) 

+�𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑖𝑖�𝜌𝜌 + �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖�𝜏𝜏 + 𝑊𝑊𝑖𝑖𝑖𝑖𝜋𝜋 + 𝜑𝜑 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖   (2), 

where 𝐷𝐷𝑖𝑖𝑖𝑖1 , 𝐷𝐷𝑖𝑖𝑖𝑖2 , and 𝐷𝐷𝑖𝑖𝑖𝑖3  are a combination of the treatment status of households i and j with 

[treated, treated], [treated, control], and [control, treated]. The remaining combination [control, 

control] is a reference group; T is a binary indicator for the end-line survey; 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑖𝑖 denote a 

vector of baseline controls for farmers i and j characteristics, respectively12; 𝑊𝑊𝑖𝑖𝑖𝑖 describes a 

dummy equal to one if the gender of both farmers is the same; 𝜑𝜑 is the production site fixed 

effect; and 𝑢𝑢𝑖𝑖𝑖𝑖 is a random disturbance. Following Attanasio et al. (2012), standard errors are 

clustered at the production site level to allow for possible correlations not only within dyadic 

pairs but also across all dyads in the same location.  

                                            
10 Using the full sample, including nonacquaintance pairs, does not alter our main findings.  
11 In the questionnaire, we asked respondents whether he/she asked advice on rice management practice 
from a specified person by the time of the survey. 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖  is one if the answer to this question is yes.  
12 If 𝐿𝐿𝑖𝑖𝑖𝑖  is bidirectional (i.e., 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖), 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑋𝑋𝑖𝑖𝑖𝑖 should be imposed: In such a case,|𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖| 
instead of �𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑖𝑖� is more relevant as regressors (Fafchamps and Gubert 2007).  
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Table 8 presents estimated results by a linear probability model. The coefficient estimate 

on the [treated, treated] dummy, α1, is positive and statistically significant, but its interaction 

term with the end-line data dummy, β1 , is statistically insignificant. This indicates that 

information exchange amongst treated farmers is more active than control counterparts at the 

same production site, and its tendency does not systematically change over time. On the other 

hand, consistent with our expectation, we observe a negative and significant coefficient on the 

[control, treated] dummy, α3, and a positive and significant coefficient on the interaction term 

with the end-line data dummy, β3 . These results illustrate that either controlled farmers 

refrained from asking agricultural advice from treated farmers or the latter refrained from 

disclosing the management information to the former in the first year after the training,13 but 

they are eager and active in doing so in the second year after the training. This strongly indicates 

that impact evaluation in the initial phase was less likely to be undermined by spillovers, 

supporting our claim that the recommended practices were more productive. It also supports our 

main finding that there were information spillovers after the relaxation of the SUTVA in the two 

years after the training, which would facilitate control farmers to improve their rice management 

practices and performance through social learning.  

 

4.2 Extension to the Linear-in-mean Model 

While our analysis so far supports the existence of social learning, one may wonder whether 

respondents’ self-report about information exchange patterns is biased and simply reflects their 

willingness to satisfy researches’ expectation. Although we cannot directly address such 

concerns, if social learning actually plays a role, we might observe the influences of peer 

behavior and performance on one’s own. As a robustness check to verify this possibility, we 

                                            
13 This is also consistent with the fact that some cooperatives created their own rules to keep control 
farmers from learning the management practices taught in the training during the first year. 
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employ the linear-in-mean model. Exactly identifying peer effects is, however, complicated 

because of reflection problems. As discussed by Manski (1993), individuals would behave 

similarly not only through social learning (called the “endogenous effect”), but also because they 

have similar characteristics (called the “exogenous effect”) or they face similar institutional 

environments (called the “correlated effect”). To disentangle endogenous social effects from 

other confounders, we add several variables to Equation (1).  

First, based on the network data elicited in the random-matching-within-sample method, 

we take the average values of baseline observable characteristics in i’s information network, 

regardless of whether network peers are treated or control farmers, and include them into 

regressors. This serves to control for exogenous effects along with the location fixed effects that 

control for unobservable correlated effects. Second, to explore whether the peers’ average 

behavior and performance directly affect farmer i’s performance, we also include the average 

productivity or technology adoption in i’s network, regardless of their treatment status. Since the 

number of peer adopters in i’s information network is used for the numerator of technology 

adoption variables, this mimics an identification strategy undertaken by Bandiera and Rasul 

(2006).14,15 Following Mekonnen et al. (2018), we use lagged rather than contemporaneous 

values of mean group performance or behavior in recognition that information on agricultural 

technology cannot be diffused quickly. Third, as another variable to capture endogenous peer 

effects especially mediated by treated farmers, we add the share of treated farmers in i’s 

information network along with the network size (i.e., max six). This is akin to the methodology 

used by Kremer and Miguel (2007) and Oster and Thronton (2012). The original intuition behind 

this method is that once we control for the network size (which could be potentially 

                                            
14 Unlike Bandiera and Rasul (2006), however, we created the variable of peer adopters based not on 
respondent’s perception (i.e., proxy-report), but on peer’s own self-reports in the interview. See Hogset 
and Barrett (2010) for a discussion on how proxy-report tends to contain a measurement error and 
possibly biases estimation results.  
15 Following Bandiera and Rasul (2006), we have included the quadratic term of the average outcome in 
i’s network as well, but we did not find significant non-linear relationships.  
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endogenous),16 the share of network peers in the treatment group is random because of the 

randomized experiment. This exogenous variation can be then used to identify peer effects.  

Note that the average peer performance and the share of treated farmers in i’s network 

above are expected to reflect different channels of peer effects: the former may partly capture 

learning by direct observation even without mouth-to-mouth communication, while the latter 

may partly capture knowledge transmission from treated farmers even when treated farmers do 

not actually adopt some technologies due to certain constraints.  

We restrict the observation of this analysis to the end-line year as it reflects a normal 

condition without the prohibition of information exchange, in which spillovers are more likely to 

take place. We also restrict the outcome variables to rice yield, gross output value per hectare, 

the adoption of field levelling, canal/drainage construction/reparing, and straight-row planting 

for which strong information spillovers from treated to control farmers seem to exist as observed 

in Table 6.  

Although we attempt to minimize concerns about spurious correlation by controlling 

exogenous and correlated effects, we are aware of a potential endogeneity issue in this exercise. 

For example, control farmers who are more motivated, if all else held constant, may be more 

willing to establish information links with treated farmers who know the new technique or with 

peers who actually adopt it. Given the possibility that interventions can alter the underlying 

network structure (Comola and Prina 2017; Advani and Malde 2018), we admit that our 

constructed variables to capture social learning/endogenous peer effects are not free from 

endogeneity concerns.17 

                                            
16 In the random matching within sample method, the network size should not be interpreted literally, 
but rather as a proxy for one’s social connectedness where the more random matches a household knows, 
the larger will be their true social network (Murendo et al. 2018).  
17 Without a sufficient number of instruments, it seems technically infeasible to overcome this potential 
endogeneity issue.  
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With this caveat in mind, the estimated results in Table 9 show that the share of treated 

farmers significantly positively affect one’s own behavior and performance for gross output 

value per hectare, levelling, and straight-row planting. We also observe a positive effect of the 

average performance of network members in most specifications, although they are statistically 

insignificant except for levelling, perhaps due partly to the low statistical power and partly to 

difficulties in mimicking new technologies without learning through deep communication. 

While these results should be interpreted with caution to avoid strong causal inference, it seems 

to be no exaggeration to argue that the results provide further suggestive evidence on the 

existence of spillovers, especially mediated through treated farmers.  

 

5. Conclusions  

The use of RCTs in empirical studies particularly in development economics has been growing 

rapidly and providing a substantial amount of new knowledge on real-world practices. RCTs, 

however, could be a potential source of inequality in outcomes to the extent that they offer 

positive benefits to the treated individuals, giving rise to ethical concerns. By facilitating 

spillovers from treated to control individuals, we could mitigate such inequality and improve 

social welfare; however, it comes at a cost in that spillover could be a threat to accurate impact 

assessment because it violates the SUTVA.  

This study executes a novel RCT to examine whether rice management training has the 

intended positive impacts on the adoption of recommended practices and productivity in the 

short term as well as whether any performance gap between treated and control farmers 

diminishes over time by facilitating information spillovers from the former to the latter in the 

subsequent period. We found the positive and significant short-term effects of the training, 

which widen the gap in yield by 20%, gross output value per hectare by 24%, and the adoption 

rates of selected rice management practices between treated and control farmers. However, 
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during the technology dissemination process, control farmers improved their performance, and, 

as a result, the gap between treated and control farmers becomes virtually zero in the longer term. 

Our detailed analysis of learning link data shows supportive evidence of the existence of 

information spillovers. Indeed, control farmers are less likely to ask treated farmers for advice on 

rice management practices when we asked them not to do so and the two groups of farmers are 

more likely to exchange new knowledge after the restriction is lifted. Thus, the benefit of the 

direct training by extension agencies has been effectively spread from trained to non-trained 

farmers through indirect farmer-to-farmer information transmission over time.  

More often than not, experimental studies create inequality in the community that is 

never addressed. This inequality may be socially costly and sometimes unacceptable to potential 

beneficiaries and practitioners. In those cases, researchers would lose opportunities to deeply 

understand the causes and resolutions of social problems, while communities and practitioners 

might also miss opportunities to adopt effective programs. By contrast, the present study has 

demonstrated a unique research design, in which we initially run the RCT to establish the impact 

of an intervention, and we next facilitate the dissemination of the useful information to the rest of 

the community by providing subjects with opportunities for social learning.  

We expect that the benefit of this new research design is particularly pronounced in 

development programs whose benefits can be shared by local community members. Examples 

include training in the use of agricultural technology, entrepreneurial management, and health 

care, wherein local community members can simultaneously benefit from new knowledge 

without jeopardizing others’ use and without incurring substantial training cost.  

One specific policy implication drawn from our study is that since knowledge of 

agronomic management practices is likely to be a local public good, it should be disseminated at 

least initially by the public sector through such means as agricultural training. Otherwise, efforts 

to improve technology would be suboptimum because of non-excludability of agricultural 

technology. In all likelihood, it is a mistake to assume that profit-oriented private enterprises 
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provide technology information, e.g. through contract farming, unless information 

dissemination through social networks is not feasible. Public extension agents can save 

resources by offering the extension services only to selected farmers in the community who 

would then offer a technical training to neighboring farmers. Although our experiment relies on 

random assignments without any incentive scheme, how to best select treated nodes and whether 

incentives should be given to them in order to maximize diffusion and efficiency may be 

important questions for future research (Beaman et al. 2015; Emerick et al. 2016; Kondylis et al. 

2017: Barrett et al. 2018; BenYishay and Mobarak 2018).  

Another more general policy implication to be stressed is the importance of rigorous 

impact evaluation using RCTs combined with other methodologies to identify useful knowledge 

for local people. This is crucial to avoid the persistence of traditional inferior practices or the 

introduction of inappropriate knowledge, which can take place if a social experiment is 

dispensed with. Herein lies a new important opportunity for economists and experts in 

agricultural, management, and health sciences to collaborate on for the sake of improving the 

well-being of a group of people. 
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Table 1  Sample Structure by Season, Year, and Type of Production Sites 
 

Year
Main

season
Sub

season
Type 1 Type 2 Type 3 Type 4 Total

2015 (baseline) 333 91 170 76 53 125 424

2016 (midline) 193 7 87 23 41 49 200

2017 (endline) 168 46 83 31 54 46 214

Total 694 144 340 130 148 220 838
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Table 2  Baseline Balance of Sample Plots by Treatment Status 
 

 
 
Standard deviations are in brackets. ***<0.01; **<0.05; *<0.1 

Treated Control Mean difference Treated Control Mean difference
(1) (2) (3) (4) (5) (6)

Attendance rate (=1) 0.421 0.002 0.420*** 0.398 0.002 0.396***
[0.023] [0.001] [0.026] [0.001]

Head's age (years) 43.861 43.333 0.527 44.175 44.030 0.145
[0.949] [0.832] [1.068] [0.947]

Head's education (years) 3.314 2.900 0.414 3.151 2.821 0.330
[0.271] [0.269] [0.311] [0.302]

Head is male (=1) 0.889 0.886 0.004 0.869 0.875 -0.006
[0.022] [0.022] [0.027] [0.026]

HH size 9.115 8.724 0.392 9.100 8.863 0.237
[0.307] [0.310] [0.353] [0.359]

Plot size (ha) 0.587 0.476 0.110*** 0.571 0.472 0.099*
[0.038] [0.020] [0.046] [0.023]

  Owner (=1) 0.731 0.776 -0.045 0.756 0.774 -0.018
[0.031] [0.029] [0.034] [0.032]

  Leaseholder (=1) 0.221 0.162 0.059 0.188 0.161 0.027
[0.029] [0.025] [0.031] [0.028]

  Sharecropper (=1) 0.024 0.014 0.010 0.025 0.018 0.007
[0.011] [0.008] [0.012] [0.010]

  Others (=1) 0.019 0.048 -0.028 0.025 0.048 -0.023
[0.010] [0.015] [0.012] [0.016]

Log asset value 4.674 4.703 -0.029 4.561 4.637 -0.075
[0.099] [0.085] [0.113] [0.091]

F-test of joint significance 1.680* 0.912
Number of Observations 208 210 160 168

Full sample Subsample in main season
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Table 3  Baseline Balance of Sample Plots by Attrition Status 
 

  
 

Standard deviations are in brackets. ***<0.01; **<0.05; *<0.1 

Attrited
Non-

attrited
Mean

difference
(1) (2) (3)

Treatment (=1) 0.476 0.495 -0.019
[0.045] [0.035]

Type =1 (=1) 0.111 0.415 -0.304***
[0.028] [0.034]

Type =2 (=1) 0.341 0.159 0.182***
[0.042] [0.026]

Type =3 (=1) 0.040 0.179 -0.139***
[0.017] [0.027]

Type =4 (=1) 0.508 0.246 0.262***
[0.045] [0.030]

Head's age (years) 43.250 44.595 -1.345
[1.034] [0.950]

Head's education (years) 2.468 3.304 -0.836*
[0.325] [0.284]

Head is male (=1) 0.806 0.912 -0.106***
[0.036] [0.020]

HH size 9.524 8.654 0.871*
[0.430] [0.306]

Plot size (ha) 0.360 0.618 -0.258***
[0.026] [0.036]

  Owner (=1) 0.847 0.712 0.135***
[0.032] [0.032]

  Leaseholder (=1) 0.089 0.229 -0.141***
[0.026] [0.029]

  Sharecropper (=1) 0.016 0.024 -0.008
[0.011] [0.011]

  Others (=1) 0.040 0.034 0.006
[0.018] [0.013]

Log asset value 4.213 4.835 -0.622***
[0.099] [0.095]

F-test of joint significance 9.566***
Number of Observations 124 204
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Table 4  Changes in Outcome Variables by Treatment Status: Baseline, Mid-line, and End-line 
 

  
 

Standard deviations are in brackets for mean values, and standard errors are in brackets for unconditional difference-in-difference.  
***<0.01; **<0.05; *<0.1 

Year 1

Treated Control
Mean

difference
Treated Control

Mean
difference

Treated Control
Mean

difference
Year 2- Year 1 Year 3- Year 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Panel A
Fertilizer (kg/ha) 214.071 254.340 -40.269 248.822 261.288 -12.466 232.750 255.110 -22.360 27.803 -9.894

[19.979] [32.869] [15.937] [17.609] [21.745] [17.994] [46.061] [36.572]
Seed selection (=1) 0.906 0.864 0.042 0.929 0.978 -0.050 0.976 0.976 -0.000 -0.092* 0.050

[0.029] [0.034] [0.026] [0.015] [0.017] [0.017] [0.055] [0.040]
Levelling  (=1) 0.772 0.791 -0.019 0.857 0.677 0.180*** 0.867 0.810 0.058 0.199** -0.122

[0.040] [0.039] [0.036] [0.049] [0.037] [0.043] [0.081] [0.083]
Canal/drainage construction/reparing (=1) 0.906 0.879 0.027 0.867 0.731 0.136** 0.855 0.929 -0.073 0.109 -0.209***

[0.028] [0.032] [0.034] [0.046] [0.039] [0.028] [0.071] [0.076]
Transplanting in row  (=1) 0.054 0.019 0.035 0.378 0.108 0.270*** 0.349 0.179 0.171** 0.235*** -0.099

[0.021] [0.014] [0.049] [0.032] [0.053] [0.042] [0.063] [0.090]
Panel B
Rice Yield (ton/ha) 3.440 3.940 -0.499** 4.052 3.671 0.382 3.416 3.724 -0.307 0.881** -0.689

[0.164] [0.174] [0.238] [0.192] [0.203] [0.202] [0.387] [0.424]
Gross output value (000 CFAF/ha) 603.159 669.393 -66.233 645.433 582.479 62.954 536.090 597.471 -61.380 129.187* -124.334*

[32.452] [31.737] [37.660] [31.545] [31.675] [31.760] [66.960] [67.446]
Rice income (000 CFAF/ha) 405.308 405.091 0.217 413.726 353.458 60.268 232.174 292.198 -60.024 60.051 -120.292*

[31.311] [32.544] [36.667] [28.192] [38.128] [32.294] [64.909] [68.277]
Rice profits (000 CFAF/ha) 331.539 320.196 11.343 243.209 230.344 12.864 108.260 155.150 -46.890 1.522 -59.754

[29.863] [34.177] [51.905] [32.074] [40.102] [31.341] [76.013] [81.382]
F-test of joint significance 1.516 4.615*** 1.777*
Number of Observations 101 103 98 93 83 84 395 358

Unconditional DIDYear 2 Year 3
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Table 5  Estimated Results on the Dynamic Impacts of Training: Rice Productivity 
 

 
 
Clustered standard errors at the production site level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1  
Control variables included but not reported here: Year dummy, household size, head’s characteristics (age and its square, years of education and the male dummy), plot 
characteristics (cultivation size, tenure dummies for owner, leaseholder, sharecroppers), log household asset value, and local fixed effect. Attendance rate is 
instrumented by the treatment dummy, while attendance × end-line is instrumented by treatment × end-line dummy.  

Rice Yield
(ton/ha)

Gross output
value

(000 CFAF/ha)

Rice income
(000 CFAF/ha)

Rice profits
(000 CFAF/ha)

(1) (2) (3) (4)
ITT
Treatment (=1) 0.748* 140.105** 102.768* -8.362

(0.335) (51.348) (45.640) (50.222)
    × endline -0.642* -126.704** -52.889 69.781

(0.279) (44.488) (61.507) (70.156)
Wald test (Ho: total effect is zero) 0.56 0.26 0.89 2.18
N 353 353 353 353
R-squared 0.465 0.418 0.678 0.709
TOT
Attendance rate (instrumented) 1.453** 270.438*** 203.150** -15.249

(0.629) (94.168) (81.749) (85.727)
    × endline (instrumented) -1.254** -245.705*** -114.245 123.358

(0.527) (80.283) (96.329) (116.879)
Wald test (Ho: total effect is zero) 0.78 0.37 1.13 2.71*
N 353 353 353 353
R-squared 0.462 0.416 0.681 0.710
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Table 6  Estimated Results on the Dynamic Impacts of Training: Agronomic Practice 
 

  
 

Clustered standard errors at the production site level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1  
Control variables included but not reported here: Year dummy, household size, head’s characteristics (age and its square, years of education and the male dummy), 
plot characteristics (cultivation size, tenure dummies for owner, leaseholder, sharecroppers), log household asset value, and local fixed effect. Attendance rate is 
instrumented by the treatment dummy, while attendance end-line is instrumented by treatment × end-line dummy. 

  

Fertilzer
(kg/ha)

Seed
Selection

Levelling
Canal

/drainage
Straight-row

planting
(1) (2) (3) (4) (5)

ITT
Treatment (=1) 24.736 -0.033 0.178*** 0.119* 0.218**

(17.358) (0.031) (0.050) (0.062) (0.067)
    × endline -27.566 0.041** -0.202 -0.236** -0.227*

(24.593) (0.017) (0.134) (0.089) (0.099)
Wald test (Ho: total effect is zero) 0.03 0.07 0.06 2.28 0.02
N 353 353 353 353 353
R-squared 0.416 0.133 0.313 0.427 0.627
TOT
Attendance rate (instrumented) 47.437 -0.063 0.340*** 0.227* 0.417***

(30.788) (0.056) (0.084) (0.118) (0.095)
    × endline (instrumented) -52.111 0.076*** -0.380* -0.432*** -0.430***

(41.586) (0.030) (0.215) (0.154) (0.155)
Wald test (Ho: total effect is zero) 0.04 0.08 0.06 2.81* 0.02
N 353 353 353 353 353
R-squared 0.415 0.129 0.295 0.418 0.628
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Table 7  Estimated Results on Heterogeneous Impacts of Training by Production Site Type 
 

 
 
Clustered standard errors at the production site level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1  
Control variables included but not reported here: Year dummy, household size, head’s characteristics (age and its square, years of education and the male dummy), plot 
characteristics (cultivation size, tenure dummies for owner, leaseholder, sharecroppers), log household asset value, and local fixed effect.  

Rice Yield
(ton/ha)

Gross output
value
(000

CFAF/ha)

Rice income
(000

CFAF/ha)

Rice profits
(000

CFAF/ha)

Seed
selection

Fertilzer
(kg/ha)

Levelling
Canal

/drainage

Straight-
row

planting

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ITT
Treatment 0.554* 86.740 75.152 35.290 -0.005 43.793*** 0.162*** 0.036 0.140

(0.245) (60.225) (73.338) (39.625) (0.018) (7.013) (0.026) (0.035) (0.076)
    × Type 2 0.379 47.181 47.018 -20.633 0.024 -36.936* -0.205* -0.173*** -0.151

(0.871) (115.163) (145.227) (103.333) (0.021) (17.298) (0.107) (0.047) (0.133)
    × Type 3 -0.185 11.013 7.947 75.635 0.082 -51.015*** -0.075 0.001 -0.014

(0.228) (73.335) (74.681) (69.812) (0.067) (11.668) (0.043) (0.108) (0.068)
    × Type 4 -0.840** -104.229 -52.751 -79.356* -0.131*** -67.815*** -0.103** 0.024 0.019

(0.263) (62.366) (71.359) (36.842) (0.019) (6.568) (0.035) (0.035) (0.070)
N 353 353 353 353 353 353 353 353 353
R-squared 0.468 0.415 0.678 0.709 0.167 0.419 0.307 0.414 0.619
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Table 8  Estimated Results on the Dyadic Regression 
 

  
 

Clustered standard errors at the study site level in parentheses: *** p<0.01, ** p<0.05, * p<0.1   
Control variables included but not reported here: The sum and differences of household size, heads’ age, 
head’s years of education, cultivation land size, asset values, and a dummy equal to one if the household 
heads are same gender as well as local fixed effects. 

 

Ask agricultural
advice =1

Both treat [Treat, Treat] 0.045*

(0.020)

×　endline -0.018

(0.031)

Own treat, pair control  [Treat, Control] 0.019

(0.030)

×　endline 0.036

(0.040)

Own control, pair treat  [Control, Treat] -0.063**

(0.027)

×　endline 0.091**

(0.033)

N 2096

R-squared 0.063
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Table 9  Estimated Results on the Linear-in-mean Model 
 

 
 
Clustered standard errors at the production site level in parentheses.  *** p<0.01, ** p<0.05, * p<0.1  
Control variables included but not reported here baseline respondent’s and average values in respondent’s 
network of: household size, head’s characteristics (age and its square, years of education and the male 
dummy), plot characteristics (cultivation size, tenure dummies for owner, leaseholder, sharecroppers), log 
household asset value, and local fixed effect, as well as the treatment dummy for the respondent.  
 
  

Rice Yield
(ton/ha)

Gross output
value
(000

CFAF/ha)

Levelling
Canal

/drainage

Straight-
row

planting

(1) (2) (4) (5) (3)
The average outcome value (lagged) in network 0.279 0.206 0.273* -0.085 0.079

(0.197) (0.155) (0.133) (0.116) (0.070)

Network size -0.107 -12.155 -0.024 0.027* 0.025

(0.129) (20.075) (0.017) (0.012) (0.021)

Share of treatment in network 2.426 494.419* 0.537** 0.256 0.586**

(1.312) (207.006) (0.202) (0.224) (0.217)

N 144 144 144 144 144

R-squared 0.448 0.386 0.388 0.503 0.737
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Appendix 1  Estimation Results for Non-attrition Probit Model 
 

 
Standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

Year 2 Year 3

(1) (2)

Head's age (years) -0.015 0.024

(0.043) (0.035)

Head's age squared (years) 0.000 -0.000

(0.000) (0.000)

Head's education (years) 0.037 0.021

(0.023) (0.022)

Head is male (=1) 0.570** -0.177

(0.283) (0.271)

HH size -0.011 -0.011

(0.021) (0.021)

Plot size (ha) 0.116 0.641**

(0.217) (0.270)

  Owner (=1) -0.078 0.191

(0.376) (0.381)

  Leaseholder (=1) -0.283 0.314

(0.412) (0.410)

Log asset value 0.194*** 0.081

(0.068) (0.067)

Constant -0.633 -2.175**

(1.142) (1.042)

Production site fixed effects Yes Yes

N 328 328
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Abstract(in Japanese) 

要約 

 

ランダム化比較試験を通じた開発プロジェクトのインパクト評価は、他の複雑な計量

経済学的方法よりも少ない仮定で、より信頼性の高い結果をもたらすものとして注目

されている。ランダム化実験では、介入を受ける実験群とそれを受けない統制群の二

つをランダムに振り分ける。割り付けがランダムゆえ、介入を受ける確率は全ての人

に平等に与えられており、その意味では機会の平等は保障されている。しかし、介入

が効果的なものであればあるほど、事後的に実験群・統制群の間に不平等が生まれ、

そうした不平等の存在は社会的なコストとなりうる。 

 

本研究は、コートジボワールで行った稲作技術研修を例として、プロジェクトの厳密

な因果評価とその後「実験によってもたらされた」不平等を緩和させる工夫を施した、

新たな実験デザインを提示する。まず、プロジェクトの厳密な評価を行うために、ト

レーニング直後の段階では、研修を受けなかった農家に、研修を受けた農家と研修内

容についての情報交換をしないよう要請した。これは実験群から統制群に情報やその

効果が漏出（スピルオーバー）してしまうとバイアスのないインパクト評価ができな

くなるからである。トレーニングから一年後、今度は、実験群と統制群の農家の間で

積極的に情報交換を行うことを奨励し、スピルオーバーが生まれやすくなるようにし

た。その結果、研修直後には稲作技術の普及率や収量は研修組の方が高かったが、情

報のスピルオーバーの結果、研修を受けなかった農家もやがて研修の効果を享受し、

研修から 2 年後までには両者の間に稲作のパフォーマンスの差がなくなったことが判

明した。 

 

キーワード：不平等、プログラム評価、ランダム化実験、スピルオーバー 
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