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Abstract
We construct a spatial equilibrium model with endogenous air pollution as a by-product of
production and consumption, where spatially mobile skilled and unskilled workers are affected
negatively but heterogeneously by air pollution. Using a calibrated version of the model based
on data for China in 2010, we show that strict regulation can be a centripetal force that attracts
workers and production toward the regulated place, while reducing the local and overall emission
of pollutants. This result is in contrast to the insights of traditional theories that see environ-
mental regulation as a centrifugal force for the local economy. The migration of workers who
care environmental quality, input-output linkages in domestic trade networks, and openness to
international trade, work in the mechanism delivering this result. We then consider a hypothetical
policy to reduce national industrial emission by 10 percent and compare strategies on how to
allocate reduction responsibilities across cities. We find that concentrating responsibility in a
limited number of rich cities may outperform a more equal allocation in terms of welfare and
economic output.
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1 Introduction

Air pollution is one of the leading causes of death and health problems in the current world.1

Low and middle-income countries are substantially more polluted than richer countries, and the

mortality due to air pollution concentrates in those countries. China is one of the most severely

affected countries by air pollution along with India. For example, it accounts for 25-30 percent

of global mortality from air pollution in 2015 (Landrigan et al. 2017). Thus, as when Chinese

Premier Li Keqiang declared "war against pollution" in his 2014 statement, the leaders of the

Chinese government also prioritize this issue.

In principle, air pollution is a negative externality, and internalizing it through regulation

is welfare-enhancing. At the same time, environmental regulation is traditionally viewed as a

cost to the local economy and it works as a centrifugal force to drive industries out from the

regulated regions. However, these mechanisms may not necessarily be simple in an economy

with many interconnected regions. China is a large country with a great regional diversity, where

workers and firms move across regions. Also, regions in China are tied via input-output linkages

and a local shock may propagate to other regions. Since environmental regulations affect local

factor prices as well as amenities, the effect of regulation does not rest only within the regulated

place: it may change the prices, industrial composition, and factor allocations of other regions.

Therefore, the net impact of environmental regulation on the local and nationwide outcomes will

depend on many things, and are not readily obvious.

To understand the impact of environmental regulation in this complex spatial context, this

paper proposes a spatial general equilibrium framework in which air pollution is endogenous as

a by-product of production and consumption. By incorporating a standard trade economy model

plus pollution by Copeland and Taylor (2004) and spatial equilibrium models similar to those of

(Redding and Rossi-Hansberg 2017; Caliendo et al. 2018; Faber and Gaubert 2019), our model

allows analysis of how a local or aggregate shock from pollution control regulations spatially

propagates through trade and migration linkages. Using the model with an arbitrary number of

1. See https://www.who.int/airpollution/en/.
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cities that is calibrated to the data of China as of 2010, we conduct various policy simulations

to understand the potential effects of local and national environmental policy at aggregated and

disaggregated levels.

The key contribution of this paper is that we demonstrate that the mobility of heterogeneous

workersmatters in determining the aggregate and distributional impact of environmental policies.

Departing from the conventional theories in the literature of environment and trade, we introduce

mobile workers who have heterogeneous tastes with regard to environmental quality. Thanks

to this extension, we obtain several results that may contradict to traditional and popular views

on how local environmental policy affect the regional economy and environment. For example,

we find that there are cases where stricter environmental policies may be beneficial not only for

the local air quality but also for the local economy. In addition, we also show that the same

environmental policy can have different nationwide implications depending on the place where

such policy is implemented. In some cases, spatially uneven policies may have greater welfare

benefit than a uniform policies if we take the people’s responses through migration into account.

The model has three production sectors, namely, agriculture, manufacturing, and services.

Among these, we regard the manufacturing sector as the polluting sector, respecting the fact

that the majority of the anthropogenically contributed air pollution comes from manufacturing

emissions in China. To represent the complex mixture of regulatory tools used in local envi-

ronmental control, we introduce a Pigouvian emission tax for industrial emissions that is set by

local government to regulate local firms’ emissions of air pollutants. This setting of endogenous

pollution from the production side echoes the standard analytical framework that decomposes

local emissions of pollutants into the scale (size) of the local economy, the composition of local

industries, and the environmental technology of local producers (Grossman and Krueger 1995;

Copeland and Taylor 2004). Quite intuitively, the model has the feature that the local emission

increases with any increase in the size of the local economy, the rise of manufacturing sector’s

share in the economy, and the lower that environmental technology is (i.e. more emissions from

a unit of manufacturing value of production).
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In contrast to traditional analyses on the spatial distribution of air pollution in an international

economy context (e.g. Copeland and Taylor 1994; Hubbard 2014), our model of the domestic

spatial economy allows for the migration of workers across cities in China. Workers choose cities

in which their welfare is maximised, and thus the expected welfare for each type is equalised in

the equilibrium, following the tradition of Rosen (1979) and Roback (1982). Workers include

air pollution as an local amenity in their welfare evaluation. A growing literature that reveals the

demand from Chinese citizens for better ambient quality motivates us to explicitly introduce air

pollution in our welfare specification. For example, studies on the hedonic pricing of housing

show that people value air quality in their choice of housing location (Zheng, Fu, and Liu 2009;

Zheng, Kahn, and Liu 2010; Zheng, Cao, and Kahn 2011; Zheng and Kahn 2013). Ito and

Zhang (2016) use indoor air purifier purchase data between 2006 to 2012 to estimate the revealed

willingness to pay (WTP) for reductions in exposure to air pollution as measured by PM10.2

Freeman et al. (2017) use exogenous variations in PM2.5 generated by the power plants in distant

places in a city’s upwind direction and find that people are willing to give up substantial amounts

ofmoney to breathe clean air.3 Chen, Oliva, and Zhang (2017) quantify the impact of air pollution

on domestic migration in China, using the strength of thermal inversion as the exogenous source

of variations in local air pollution. Their data also show that migrants head to cities with better

air quality, holding other factors associated with the city’s attractiveness constant.4

Furthermore, our model is novel because it introduces heterogeneous workers, divided into

skilled and unskilled, and face different factor demands by firms. Their preferences also differ

in terms of tastes on environmental quality, therefore, the skilled and unskilled are harmed

differently by air pollution. The recent empirical literature reveals that skilled and unskilled

workers have different tastes for amenity and this difference matters in determining which city

2. Their preferred estimates of theWTP to reduce PM10 by one unit for five years range fromUSD4.40 to USD5.46
per household (in 2005 exchange rate).

3. According to their main estimates, a one-unit decline in PM2.5 in 2005 was worth USD 8.3 billion for the whole
of China.

4. Thermal inversion is a meteorological phenomenon that reverses the normal relationship between altitude and
air temperature. When it happens, air temperature in the upper-altitude is higher than that at the lower-altitudes. This
is known as a typical climatic cause that worsens air pollution and they use the thermal inversion defined as above as
an instrumental variable for the local level of air pollution.
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they choose to live, through the balancing of their income and the cost of accessing preferred

local amenities (i.e. housing cost). Moretti (2013), for example, finds that skilled labor in the

U.S. will pay higher living costs than the unskilled to live in cities with superior amenity. In

the context of urban air pollution in China, Chen, Oliva, and Zhang (2017) find that skilled

labor more elastically responds to the level of air pollution. According to their estimates, the

magnitude of the effect of a 1 `6/<3 increase in PM2.5 in the air on the net-migration ratio (in

percent) for college graduates or above is 0.9314 while it is 0.4723 for junior-high graduates or

below.

Thanks to these extensions introduced in our model, we obtain interesting insights on the

spatial impacts of local environmental policy that are different from the conventional views.

The conventional view on the spatial impact of environmental regulation is the pollution haven

effect (PHE) (Copeland and Taylor 2004), which asserts that strengthening local regulations will

relocate polluting industries from the regulated region to other regions with laxer policies. This

intuitively straightforward prediction is doubly undesirable for policy makers because stronger

regulation hurts the local economic output, and because the effectiveness of regulation in reducing

pollution is somewhat offset by increased emissions outside of the regulated region. We examine

how this PHE emerges in our model, and find that a stronger local regulation does not always

result in a pollution haven. While a unilateral increase in emission tax in a city definitely raises the

production costs there that reduces the competitiveness of local industry, however, the improved

air quality in the city as well as the substitution effects among factors may however result in

a relocation of workers towards the city with stricter regulations. This enhances the services

sector production in the city and raises its real GDP. Moreover, the PHE outside of the city is

substantially weakened.

Another feature that is important in the model is its flexible treatment of openness to inter-

national trade. Trade openness has important implications for how local regulations affect the

spatial distribution of pollution within a country. Specifically, eliminating international trade

tends to exaggerate PHE in the domestic economy, suggesting the importance of including the
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foreign market even in the case where the main focus of analysis is the distribution within a

country. With international trade, the increased production cost from tougher regulation in a city

results in an increase in the import of polluting varieties from foreign countries, which in turn

suppresses the positive demand effect for polluting varieties from domestic suppliers. In other

words, the PHE that takes place in the international arena weakens the PHE within a domestic

economy. In short, more international openness is associated with a less pronounced PHE in the

domestic sphere.

We then apply the model to a few policy analyses relevant to the real situation in China.

Every five years, China sets a national reduction target for the aggregate industrial emission of

pollutants as one of the policy targets in the Five-Year-Plan (FYP). This target is decomposed into

sub-national reduction responsibilities that Provinces and prefecture-level cities try to achieve. In

reality, the central government of China assigns different magnitudes of reduction responsibility

(0-30 percent) across regions and cities to achieve the national target (10 percent, in 2010) as

a sum of these regional reduction efforts. Reflecting this fact, we compare different spatial

allocation strategies of reduction responsibility that achieve the same 10 percent national level

reduction. Overall, our simulation suggests that a 10 percent reduction of aggregate emissions is

likely improve the welfare of both skilled and unskilled labor. Compared to the reference strategy

that assigns a uniform reduction magnitude to all, some strategies with uneven allocations are

found to be more welfare-enhancing.

In addition, we find that the national 10 percent reduction policymay have a different effect on

skilled workers and unskilled workers. On average, skilled workers receive a negative impact on

their real incomewhile unskilledworkers enjoy economic gains, across all the allocation strategies

compared. For most of the strategies, negative impacts on average real GDP are achieved by

this national reduction policy, but their magnitude is tiny. There is only a 0 to -0.2 percent

change of aggregate real GDP required to achieve a 10 percent reduction in aggregate industrial

emissions. Surprisingly, a particular strategy that concentrates reduction responsibility in a

limited number of richer coastal cities exhibits a positive return to aggregate real GDP, meaning
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that economically costly regulation can generate economic benefits through the reallocation of

resources across space. We repeat the same exercises assuming an autarkic China where no

international trade takes place. The results show that in the absence of international trade, the

welfare effect for skilled worker is larger while that for unskilled workers is lower compared to

the case with international trade.

While some of our results observe positive economic returns as a result of stricter regulations,

our model rules out any direct mechanisms that bring economic benefit from the regulations sug-

gested by some literature. For example, Porter and Linde (1995) argue that strict environmental

regulation may induce industrial firms to invest in cleaner technology that is more productive.

As a result, the implementation of regulation boosts aggregate productivity. In addition, the

emerging empirical literature provides rich evidence about the direct effect of air pollution on

worker productivity. As one of the latest examples from China, He, Liu, and Salvo (2019) exploit

exogenous variations in exposure to PM2.5 to find its negative impact on the productivity of

industrial workers in Chinese towns.5 However, our approach intentionally excludes the direct

productivity effects of regulation and discusses the impact of regulations purely from the cost

point of view for each individual firm, so that we could focus on the implications of spatial

reallocation in determining the economic and welfare outcomes of environmental regulation.

Our framework contributes to the literature of economic geography from a number of per-

spectives. To the best of our knowledge, this paper is the first to incorporate local air pollution

and a heterogeneous labor force into a quantitative spatial equilibrium model. Desmet and

Rossi-hansberg (2015) are predecessors who incorporate the environmental issue into spatial

general equilibrium framework, but they focus on global warming where the impact of emissions

works globally, without taking into account workers’ heterogeneity. Balboni (2016) studies the

spatial distribution of economic activity affected by road infrastructure and localized impact of

environment (sea level rise on the Vietnamese coast due to global warming), however the envi-

ronment (global warming) is exogenous in her setting. Our approach is novel in that it deals with

5. See Zivin and Neidell (2018) for a short summary of global evidence in this regard.
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endogenous environmental externalities in a spatial equilibrium framework where heterogeneous

workers can migrate across regions and sectors.

The rest of the paper is organized as follows. Section 2 introduces the theoretical model and

Section 3 summarizes the data and calibration procedures. We explain themodel properties using

numerical simulations of unilateral pollution control policy in Section 4. Section 5 describes

how the model evaluate nationwide reduction target policies and compares different strategies of

spatial responsibility allocation. Finally, Section 6 concludes the paper.

2 The Model

Our purpose is to build a quantitative model of the Chinese economy with endogenous air

pollution. As motivated in the previous section, our interest rests in the spatial difference of

economic activity and air pollution within China. Therefore, the model accommodates a total of

# locations, consisting of # − 1 locations in China and a single consolidated external location,

the rest of the world (RoW). Locations in China, called "cities" in the rest of the paper, are

denoted with index = (or 8) ∈ C. For the set of all locations in the model, including the RoWW

is used for the notation.

Preference To understand the heterogeneous impact of environmental policy across different

type of people, we assume that the economy is populated with two types of labor, skilled and

unskilled workers. We take this dichotomous setting for workers’ heterogeneity for the benefit

of analytical tractability and calibration of the model to the data. Specifically, since the skill

variable in our data is educational attainment, discrete categorization of the skill levels fits well

in this context.

The number of skilled workers in = is denoted by !:=. The unskilled counterpart in = is !D=.

The total supply of workers of type C ∈ {:, D} is fixed, denoted by !CC ≡
∑
=∈C !

C
=. A worker ]
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of type C ∈ {:, D}’s preference

*C= (]) = YC= (])0C (�=)�C=�C= (1)

where:

0C (�=) = exp(−bC�=) (2)

captures utility loss from ambient pollution in =, �= > 0. We assume that a skilled worker is

more sensitive to pollution, b: > bD , consistent with empirical findings such as Chen, Oliva, and

Zhang (2017). YC= (]) is a Fréchet distributed idiosyncratic preference for city = by a type C worker

], defined over all = ∈ C for each individual worker. The distribution function is identical for all

locations, with mean 1 and dispersion parameter [C . �C= is the average valuation of location =’s

exogenous amenity other than air pollution by type C workers.

Workers consume housing �� , traded agricultural goods �� , traded manufacturing goods

�" , and non-traded services �( . �� is supplied and consumed only within the same =. For

simplicity, �� is the land whose supply is a fixed local endowment. The preference over goods

is assumed to be;

�C= =
©«

1
U


∑

9=�,",(

(�C9 ,=)
d−1
d


d

d−1 ª®®¬
U (

�C
� ,=

1 − U

)1−U

(3)

where d > 1 and U ∈ (0, 1). Workers of both types spend a constant fraction U of their income

on goods and services other than housing. The expenditure shares within the non-housing

goods are not constant and depend on local relative prices. Let % 9 ,= denote the local prices

of the 9 (∈ {�, ", (}) sector goods in =. Then, the CES preference on manufacturing and

traded services (the first parenthesis of (3)) ensures that the expenditure share on 9-sector goods

becomes Uj 9 ,=, where j 9 ,= ≡
%

1−d
9,=

%
1−d
) ,=

and %) ,= =
(
%

1−d
�,=
+ %1−d

",=
+ %1−d

(,=

) 1
1−d . This assumption

allows the expenditure share of non-traded services varies across locations.6 Note that the

6. Note that we assume that the parameters governing the preference over goods expressed in (3) is the same
between skilled and unskilled workers. This means that the consumption share of each category of goods is identical 
between the skilled and the unskilled in the same city =. This is for the sake of simplicity, but does not seem to affect
the qualitative results of the model.
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preference (1) ensures that skilled workers have a higher willingness to pay to reduce their

exposure to air pollution. This is important for the analysis because we are interested in how

environmental regulation works if there are heterogeneous mobile workers who differently value

the environmental quality.

Production Sectors There are three production sectors in the model; (i) a competitive agri-

cultural sector with constant returns to scale technology and zero trade cost between regions in

China, (ii) a manufacturing sector under monopolistic competition with costly domestic trade and

spatial heterogeneity of productivity that generates trade (a Ricardian), and (iii) a competitive

services sector which only serves to the local market. In the model, the manufacturing sector

emits air pollutants, while the other two sectors are assumed to be non-polluting. Traditionally,

the literature on pollution and trade has widely used two-sector models such as that by Copeland

and Taylor (2004) to incorporate the "composition effect" into the analysis. In two-sector models,

there are a modern polluting (industrial) sector and a non-polluting sector. The polluting sector

is subject to environmental regulations, and regulation may affect the industrial composition of

the two sectors through changes in relative factor prices. We assume that the manufacturing

sector is polluting based on the fact that it accounts for the largest share of the emission of

ambient pollutants in China (Zheng and Kahn 2013). However, differently from the traditional

way, we assume two distinctive non-polluting sectors, agriculture and services. In China, both

agriculture and services employ non-negligible shares of the labor force and they are different

in many aspects. Specifically, the agricultural sector mainly employs unskilled labor while the

services sector uses skilled labor more intensively. Given this difference in skill intensiveness,

a two-sector model which aggregates agriculture and services into one single "non-polluting

sector" may oversimplify the reality of the Chinese economy. In addition, the three-sector setting

fits well in our empirical context because the data (output and employment) we use for calibration

report the numbers for these three sectors.
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Agricultural Production We assume that the agricultural sector is traditional and hires only

unskilled labor. For the benefit of simplicity, we further assume that the agricultural output

can be traded without trade cost, so that the price can be normalized to %�,= = 1,∀= ∈ W.

Specifically, the production is constant returns to scale and has the following form,

.�,= = ��,=!
D
�,= (4)

where ��,= is local productivity shifter. Local endowments such as land area and fertility are

considered to be entered in this productivity shifter. !D
�,=

is the employment of unskilled labor

in the agricultural sector in =. Let FD= denote the wage of the unskilled labor, then, in the

equilibrium,

FD= = ��,= (5)

Production Technologies in the Manufacturing Sector The production technology of the

manufacturing sector closely follows the Ricardian trade model proposed by Eaton and Kortum

(2002), which have widely been used to study the domestic economic geography (see, Donaldson

and Hornbeck 2016; Caliendo et al. 2018; Faber and Gaubert 2019). There are quite a few

advantages of adopting their model. First, it allows dealing with an arbitrary number of locations

that engage in trade. Second, while the model by Eaton and Kortum (2002) was originally

designed to study international trade where the factors (such as labors) are immobile across

national borders, the model can easily be extended to accommodate the migration of production

factors. Third, the model can directly incorporate the canonical model of pollutant emission of

Copeland and Taylor (2004).

There are infinitesimal intermediate manufacturing varieties in a fixed interval, indexed by

G ∈ [0, 1]. An G-variety firm uses inputs from manufacturing and local services as well as two

types of labors. A local competitive manufacturing final producer combines all the intermediate

varieties that can be sourced from any cities within China and RoW and produce a manufacturing

composite. This local final producer sells the composite to the local final consumers and local
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producers in manufacturing and services. The primary production unit in the manufacturing

sector is the firms that produce manufacturing intermediates. Each of these firms produces

an intermediate variety using a composite of inputs as specified below. Production by the

intermediate firms generates an undesirable by-product, which is called pollutant. To reduce the

emission of pollutant, the firm needs to divert a fraction of its inputs to abatement activities. Net

emissions after abatement are a fraction of the primary gross emission.

Specifically, an intermediate G-variety producer in city = has the following technology.


@",= (G) = [1 − B= (G)] q= (G)�",=<̃= (G)

Ĩ",= (G) = _",=q= (G)�",=<̃= (G)

I",= (G) = [1 − B= (G)]
1
X Ĩ",= (G)

(6)

where @",= is the output volume, q= (G) is a variety G-specific random variable drawn from a

Fréchet distributionwith shape parameter \̃ andmean 1whoseCDF is given by � (q) = exp[q− \̃ ].

As in Eaton and Kortum (2002), q= (G) represents the efficiency of variety G production in city

=. �",= is a productivity shifter common to all manufacturing sector firms in =. This shifter is

exogenous to individual manufacturing firms. <̃= is the composite of input in Cobb-Douglass

form which is given by

<̃= (G) =
[
;:",= (G)

]W:
"

[
;D",= (G)

]WD
"

[
<"",= (G)

]W"
"

[
<(",= (G)

]W(
" (7)

where ;:
"
, and ;D

"
are skilled labor and unskilled labor inputs, respectively. <"

",=
is the input

of manufactured intermediate goods for manufacturing production, while <(
",=

is the input

from services sector.The technology is constant returns to scale at the firm level with the input

coefficients and satisfies that
∑
9′∈:,D," W

9′

",=
= 1. B= ∈ [0, 1] is the share of input composite

<̃= diverted for the pollution abatement activity. In other words, (1 − B=) of input is kept for the

main production.

The second equation in (6) assumes a simple relationship between the inputs and generated
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pollution. The gross emission before abatement, Ĩ",= (G) is assumed to be proportional to the

total input (<̃",=) the firm uses for its operation. This is a strong but common assumption in

this type of models for the benefit of analytical tractability. _",= > 0 is coefficient that specifies

the relationship between the input and emissions.

The third equation in (6) is for the end-of-pipe abatement technology. I",= refers to net

emissions, which is the pollution that is finally emitted to the environment after abatement. I",=

depends on the gross emission and the abatement effort as measured by the share of the diverted

input for abatement activity (B=). For a given level of Ĩ",=, the net emission is smaller if more

resources are used for abatement (i.e. larger B=). X ∈ (0, 1) is an inverse measure of abatement

efficiency. A higher Xmeans that end-of-pipe technology is less efficient and more final pollution

is emitted for given the potential emission and abatement resources.

Intermediate firms are price takers and perfect competition works in the market. Let FC=, C ∈

{:, D}, be the wages of type C worker, %",= be the price of the final manufacturing composite,

and %(,= be the services price in =, respectively. Since the input bundle <̃",= is an output of

the technology in (7), the cost minimization on the choice of primary inputs yields the following

unit cost for producing a bundle, which is denoted by 2̃",=,

2̃",= = Ψ
[
F:=

]W:
"

[
FD=

]WD
"

[
%",=

]W"
"

[
%(,=

]W(
" (8)

where Ψ is a constant.7 Following studies such as Antweiler, Copeland, and Taylor (2001),

Copeland and Taylor (2004), and Shapiro and Walker (2018), we summarise the set of envi-

ronmental regulations into a Pigouvian emission tax on unit emission of pollutant by the local

manufacturing sector, denoted by Z= in = (the assumptions for Z= will be discussed below). Then,

from (6) and 0 ≥ B= ≥ 1,the profit maximization problem of a firm becomes:

max
<̃",= (G) ,I",= (G)

?",=

(
I",= (G)
_",=

) X (
q= (G)�",=<̃",= (G)

)1−X − 2̃",=<̃",= (G) − Z=I",= (G) (9)

7. Namely, Ψ ≡
[
(W:
"
)W:" (WD

"
)WD" ∏

9′=",( (W
9′

"
)W
9′
"

]−1
.
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The first order conditions for the problem (9) yields the optimal unit cost which is given by
2",=

q= (G)1−X�1−X
",=

, where

2",= =

(
2̃",=

1 − X

)1−X (
_",=Z=

X

) X
(10)

A final manufacturing good is produced by a competitive local aggregator. The final good

is a composite produced by a CES function that use all the varieties G ∈ [0, 1]. Input varieties

are sourced from the lowest cost region across all the locations = = 1, ..., # , including an iceberg

trade cost to ship the good from 8 to =, g=8 > 1. The aggregation function is

&",= =

[∫
@",= (G)

f"−1
f" 3G

] f"
f"−1

(11)

where f" is the elasticity of substitution. The price of the input variety G used for final

production in = satisfies ?",= (G) = min8∈1,...,#
{
2",8 g=8

�1−X
",8

q̃8 (G)

}
. Exploiting the property of the

Fréchet distribution for q8 (G), the share of expenditure on varieties from region 8 in the total

expenditure for manufacturing varieties in = is given by,

c"=8 =
(g=82",8)−\ (�",8) \∑#

8′=1(g=8′2",8′)−\ (�",8′) \
(12)

and the price of the final manufacturing good available in = is then given by

%",= =

[
 "

#∑
8=1
(g=82",8)−\ (�",8) \

]− 1
\

(13)

where, \ ≡ \̃
1−X and  " ≡

(
Γ

(
\−f"+1

\

)) 1
1−f" is a constant.

Services Sector Goods Service sector goods are treated as non-traded, in a similar way to

Caliendo et al. (2018) and other studies. We admit that this is a strong assumption. This is

because the overall trade cost required to deliver services to a distant customer seems to be
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substantially higher than that of manufactured goods.8 Therefore, in the current model, we treat

them as non-traded and the services firms only serve local customers within the city =. A services

sector firm combines skilled labor, unskilled labor, and manufactured goods. The production

function is given by:

&(,= = �(,= [!:(,=]
W:
(,= [!D(,=]

WD
(,= [<"(,=]

W"
(,= (14)

where, <"
(,=

is manufacturing inputs of the services sector.9 The technology is constant returns

to scale such that
∑
9′∈:,D," W

9′

(,=
= 1 is satisfied. Note that we assume that W 9

′

(,=
varies across

cities. Later we detail how we calibrate these with the data. �(,= is the productivity shifter of

the services sector in = that is exogenous for individual services firms. Let %(,= denote the local

price of the services goods in =. Cost minimization and free entry ensures that the price should

satisfy

%(,= =
Ψ(,=

�(,=
(F:=)

W:
(,= (FD=)

WD
(,= (%",=)W

"
(,= (15)

where Ψ(,= is a constant.10

Goods Market Clearing In the equilibrium, all markets clear. Let. 9 ,8 ,∀ 9 ∈ {�, ", (} denote

the total value of production of sector 9 in 8. Similarly, � 9 ,= denotes the value of expenditure on

sector 9 in =. Firstly, the total agricultural supply should be equal to the demand,

∑
8∈W

.�,8 =
∑
=∈W

��,= (16)

For manufacturing varieties, the total value of production must be equal to the sum of demand

from all the potential destinations, i.e., .",8 =
∑
=∈W �",=c=8 . Using (12) and (13), this

8. According to the main estimates by Gervais and Jensen (2019) on U.S. data, trade costs for the eleven sub-sectors
in the services category range from 3.95 times (wholesale trade) to 28.67 times (real estate and leasing).

9. The services sector of course uses agricultural goods as well as land as inputs, however, we drop these from
the production function for the sake of simplicity. According to China’s input-output tables, their contribution is very
marginal for the services sector, the coefficients for agricultural inputs and land are 0.016 and 0.039, respectively.
10. Ψ(,= = (W:(,=)

−W:
(,= (WD

(,=
)−W

D
(,= (W"

(,=
)−W

"
(,= .
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condition can be rewritten as:

.",8 = �̃",=2
−\
8

∑
=∈W

g−\=8 �",=%
\
",= (17)

where, �̃",= ≡  �\",=. Since the services sector goods are non-traded, the local production

should match local demand. Mirroring this equality in the services sector, the sum of the

production values of the two traded sector should be equal to the sum of the demand for them, in

every location. Therefore, we have

.(,= = �(,=, ∀= ∈ W (18)

.�,= + .",= = ��,= + �",=, ∀= ∈ W (19)

Industrial Emission Revenue from emission charge As a means of environmental control,

local government collects emission charges frommanufacturing firms. Let /",8 be the aggregate

amount of pollutant discharged to the environment from manufacturing firms in 8. Given the

unit emission charge Z8 in 8, the 8’s government collects Z8/",8 . The first order condition for (9)

yields:

Z8/",8 = X.",8 (20)

Local government employs skilled workers to implement pollution control. No production

technology is specified for this control, while the demand for skilledworkers of this environmental

control task just has to satisfy a simple resource constraint,

F:8 !
:
/ = Z8/",8 (21)

which means that the wage payment to the skilled employees equals to the revenue from emission

charges collected from the manufacturing firms. This assumption can also be interpreted as that

the local government rebates back the collected emission charges to skilled workers.
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Land Market Local government collects land rent revenue and redistributes it to residents.

For simplicity, we assume that the government redistributes the revenue so that it augments their

wage income by the factor of (1+`) where ` > 0. From the utility function, the total expenditure

on land in = is A=�= = (1 − U) (1 + `) (F:=!:= + FD=!D=). At the same time, the revenue should be

equal to the total amount redistributed, which means A=�= = `(F:=!:= +FD=!D=). Then, ` = 1−U
U

.

This yields the equilibrium land rent given as

A= =
1 − U
U

F:=!
:
= + FD=!D=
�=

(22)

Expenditure on Goods As explained above, the income of a type C worker is wage income

plus rebated land rent, thus FC=/U. Production of manufacture and services requires input goods

other than labor. Given these, the expenditure for sector 9 in location = becomes:

��,= = j�,= (F:=!:= + FD=!D=)

�",= = j",= (F:=!:= + FD=!D=) + (1 − X)W"".",= + W"(,=.(,=

�(,= = j(,= (F:=!:= + FD=!D=) + (1 − X)W(".",=

(23)

Labor incomes and labor market clearing According to the assumptions about production

functions, the total wage earnings of skilled and unskilled labors are given as follows,

F:8 !
:
8 =

(
(1 − X)W:" + X

)
.",8 + W:(,=.(,8

FD8 !
D
8 = .�,8 + (1 − X)WD".",8 + WD(,=.(,8

(24)

Note that these equations are the labor market clearing conditions, given that the total labor

supply of type C workers in 8 is !C
8
, C ∈ {:, D}.

Emissions fromConsumption Recent studies reveal that emissions from the consumption side,

which arise when consumers use manufacturing products, are becoming increasingly important
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(Liu et al. 2016; Li et al. 2017).11 Not only in the advanced countries, even in several developing

countries such as China, emissions from the use of transportation (for example, vehicles) as

well as emissions from housing (cooking and heating) consists a large share in the emission

inventories. Therefore, here we introduce a simple mechanism of emissions from consumption,

/',= as follows. Specifically, we assume that /',= is proportional to the real manufacturing

expenditure with the fixed coefficient _',=. Assume that the use of manufactured goods generates

pollution (car, cooking equipment, air conditioning and heating, processed fuels, etc.). As the

total consumption expenditure on manufacturing in = is given by j",= (F:=!:= + FD=!D=) along

with the price %",=, the residential emissions is given by

/',= = _',=
j",= (F:=!:= + FD=!D=)

%",=
(25)

Emission to Pollution The anthropogenic emissions of pollutants such as SO2, NOx, and

the primary emission of PM2.5, contributes to the formulation of air pollution through various

complex chemical reactions. Other than those pollutants from economic activities, sources such

as sand storms from deserts, volcanos, and sea salt, plays an important role in determining

the area’s level of pollution, with climate conditions such as wind, precipitation, humidity, and

temperature. Thus, themechanism that determines how emissions fromhuman activity affects the

local ambient quality is very complex, and a full-scale scientific weather model is needed to make

a prediction of air quality for a given level of emissions. Unfortunately, the predictive models

that are commonly used are designed for a short term prediction within a small geographical

area. In our case, we intend to connect the annual sum of emissions to the annual average level

of air quality, within a relatively large geographical unit.

11. Karagulian et al. (2015) conduct a meta-analysis of local studies across the world and find that industrial
emission constitutes 16-27 percent of the PM 2.5 pollution. The residential emission contributes 15-21 percent,
and traffic contributes 15-18 percent, respectively (Aunan, Hansen, and Wang 2018; Karagulian et al. 2015). Liu
et al. (2016) estimate that industry contributed around 50 to 60 percent of PM 2.5 while residential emission is
responsible for 30 to 40 percent of it, respectively in Beijing, Tianjin, and Hebei area, throughout 2010. Transport
and power contributed relatively smaller share. These findings motivate us to include emissions from non-industrial
sources that we summarize as residential emission.
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Given this scientific limitation, a simple empirical relationship between local emission and

local air quality is used for the mapping of emissions into pollution. Let �= denote the level

of air pollution (PM2.5 concentration) in = observed as concentration in the air (with the unit

of `6/2<3, for example), after the chemical process that transforms anthropogenic and natural

primary pollutants into harmful particulates. Assume that �= has the following relationship with

the anthropogenic emissions in =; /= = /",= + /',=, the sum of emissions from manufacturing

production and residential emissions is then:

�= = 5 ( -̃=)/ ^= (26)

where ^ is a coefficient on emission and 5 ( -̃=) is a function of other local characteristics denoted

by -̃=.

Pollution control policy (emission tax) Local government sets the Pigouvian tax rate, denoted

as Z=, as an emission charge. The literature on China’s local environmental regulations (Rooij

and Lo 2010; Wu et al. 2013; Wang 2013; Zheng et al. 2014; Jin, Andersson, and Zhang 2016)

points out that China’s local leaders compete with each other in their race for promotion among

the hierarchy of the Communist Party. For prefecture level leaders, getting high performance

evaluations from their upper-level officials (i.e. Provincial government), is thus the priority

that determines their policy implementation. In the past, local GDP was the main indicator

used for evaluation. This economy-focused incentive system has long been criticized for a lack

of consideration of sustainability. However, since the tenth Five Year Plan (FYP) period was

initiated in 2001, the central government has begun to include environmental targets, such as

emission reduction targets for air pollutants. Since the eleventh FYP (2006-2010), the Chinese

government has introduced the target responsibility system (TRS) for environmental pollution

that binds lower-level officers to accomplish the targets agreed with their upper-level leaders.

Our modelling of the local government problem reflects this Chinese context. In particular,
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we assume that the evaluation of the government =, denoted by += is defined by

+= = −b6=/",= + �l= (27)

where�= = F:=!:=+FD=!D= is city =’s total value added (GDP), andl ∈ (0, 1). b
6
= > 0 is the city =

specific coefficient that reflects how much upper-level governments stress environmental quality

in their evaluation of the government of =. The local government choose Z= that maximizes

+=. It is assumed that the local government ignores (or cannot know) the impact of its Z= on

population, !:= and !D=, and the price index %) ,=, and regards them as given.

Under this assumption, a similar derivation for the Samuelson condition as in Antweiler,

Copeland, and Taylor (2001) applies. The first order condition with respect to Z= in (27) yields:

Z= =
b
6
=

l
�1−l
= (28)

(28) tells us that the emission tax is higher where the economic scale is larger. This is quite a

simple specification, however, it reflects the observed relationship between emission intensity and

the city’s economic scale described in Section A.3; which is that, the larger the city’s economic

scale is, the smaller the emission intensity from manufacturing. Given the pollution supply

function (28), and the pollution function (20), the equilibrium industrial emission is:

/",= =
Xl

b
6
=

�l=
.",=

�=
(29)

Migration It has long been argued that domesticmigration, especially rural-to-urbanmigration,

is severely restricted in China under the "hukou" system. The majority of econometric research

studies on China up to the early 2000s assumed that labor is immobile due to the hukou restriction

(e.g. Au and Henderson 2006b, 2006a). However, this restriction has been gradually eased during

the past two decades and the Chinese labor force is currently very mobile, although there still

remains substantial social and institutional discrimination against migrants(Song 2014). In
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terms of volume, rural to urban migration has been very large and we cannot explain the massive

urbanization and industrialization of China in the past few decades without inter-prefectural and

inter-provincial migration. The urbanization rate (urban population share in total population)

rose from 18 percent in 1978 to 53 percent in 2011 (Chen et al. 2013). In the past 30 years,

urban population has increased by 440 million, and half of that is said to be attributable to rural

to urban migration. Given these facts, it has become more appropriate than ever before to treat

labor as geographically mobile in China. For example, using a similar approach, Baum-Snow

et al. (2015) conducted a simulation study to assess the impact of road network improvements

on population and production, assuming both perfect labor mobility and immobility.We follow

the widely used Fréchet distributed "mobility frictions" (Baum-Snow et al. 2018) that are also

assumed in the studies such as Baum-Snow et al. (2015), Donaldson and Hornbeck (2016),

Redding (2016), Balboni (2016), and Faber and Gaubert (2019). In contrast to these studies,

however, we assume that both skilled and unskilled workers migrate across prefectures in China

searching for the place that offer them the highest utility. For each type, the expected utility

should be equalized across space in the equilibrium. Noting that the real income of type C worker

living in = can be written as
(

1
%) ,=

)U (
�=
�=

)1−U
FC=, and that the idiosyncratic location preference

n is Fréchet distributed, the spatial distribution of type C workers is then given by,

!C=

!CC
=

(
�̃C= exp(−bC�=) �

1−U
= F C=

%U
) ,=

�1−U
=

) [C
∑
=′∈C

(
�̃C
=′ exp(−bC�=′)

� 1−U
=′ F C

=′
%U
) ,=′�

1−U
=′

) [C , ∀= ∈ C (30)

For outside of China, the RoW, population is fixed.

Equilibrium The equilibrium of this economy can be defined as follows: Given the pa-

rameters, {\, X, U, g1, [: , [D , b: , bD , d, l, ^, W:9 , WD9 , W"9 , W(9 }, inter-city trade cost matrix {g},

and exogenous variables {�",8 , �(,8, �:8 , �D8 , Z
6

8
}, the equilibrium is the vectors of quantities

{/",8 , /',8, �8 , !:8 , !D8 }, prices {F:8 , FD8 , A8 , Z8 , %",8 , %(,8}, values {.�,8 , .",8, .(,8, ��,8 , �"8 , �(,8},
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and the manufacturing trade share matrix {c=8}, that are given as the solutions to (26), (20),

(25), (30), (24), (22), (28), (13), (15), (18), (19), (23), and (12).

3 Quantification of the Model

Since the model cannot be solved analytically, we calibrate it to the observed situation of China in

2010 to conduct numerical exercises. The data for the observed variables include the population

of skilled and unskilled workers, the value added of three industrial sectors (primary, secondary,

and tertiary), the PM2.5 concentration, the emission of pollutants, and other variables that are

used in the estimation procedure for some of the model parameters. The details of the data and

the calibration strategy are explained in Section A.2 and Section A.4.

We combine multiple data sources to conduct the analysis. We focus on the 296 geographical

units (270 prefecture-level cities and 26 counties directly under the Provinces) in the Eastern

half of the mainland China. Four provinces and autonomous regions, namely, Inner Mongolia,

Xinjiang, Qinghai, Tibet, and islands (such as Hainan Province) are not included in these 296

units and treated as the RoW. Economic variables, such as the value added and employment of

industries, are taken from the China City Statistical Yearbook, China Region Economy Statistical

Yearbook, as well as the online supplementary material of Baum-Snow et al. (2017). Our analysis

needs the amount of skilled and unskilled worker in each city. The best available proxy for the

people’s skill level is educational attainment of the residents. Since the data on educational

attainment of workers are not available (only adult population by degrees is available), we

assume that the share of the skilled worker in all the worker in a city is equal to the share of adult

population with at least senior high school degree out of the total adult population in the city.

Environmental variables such as PM2.5 concentration and emissions of air pollutants are from

the sources using satellite images provided by Donkelaar et al. (2016) and the MEIC database.12

The model requires the estimate of the iceberg trade cost for manufacturing intermediates

12. http://www.meicmodel.org/index.html
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between each pair of cities and between the RoW, g=8 . Since the model yields a gravity equation

of trade flow between each pair of cities, we can recover g=8 as Caliendo et al. (2018) if we have

a bilateral trade flow statistics. However, there is no available data on the bilateral flow of trade

among the pairs of prefecture-level cities in China. Therefore, we have to construct it based

on the distance and the quality of transport infrastructure. Specifically, we closely follow the

data and the method by Baum-Snow et al. (2018) that uses the digitized map of China’s road

network as of 2010 which is provided in their on-line appendix and calculate the shortest paths

(shortest travel time) between each pair of cities by the Dijkstra algorithm (the average travel

speed according to the grade of motorways is reflected). Then, we convert the calculated travel

times in hours between each pair of cities into a matrix of iceberg trade cost.13

There is no information available for the wage rates of skilled workers and unskilled workers

at the level of prefecture cities. We impute the skill-based local wages exploiting the model’s

equilibrium conditions and the sector-specific wage rates from the national level provided in the

China Statistical Yearbook. Through the process of recovering the local wages for the skilled

and unskilled workers, we also derive sector-specific input parameters for skilled and unskilled,

W:
9
and WD

9
, so that the model based national average wage rates become equal to the observed

ones.

We estimate the remaining parameters; goods expenditure share U, international border effect

g1, labor supply elasticity [C and taste for air pollution bC for each of C ∈ :, D, the elasticity of

substitution among three category of goods d, the emission tax elasticity to GDP, l, and the

elasticity of city PM2.5 with respect to city’s pollutant emissions ^. Among them, the most

important parameters are [C and bC , which are found to substantially affect the simulation results.

To estimate these parameters, we exploit the equilibrium conditions that pin down the labor

incomes (24) and migration (30). From (24) and (30), the population of type C labor in = can be

13. Specifically, the trade cost between city 8 and 9 , g8 9 , is given by g8 9 = 1 + 0.004(hours of travel time8 9 )0.8. See
Baum-Snow et al. (2018) for the detail.
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expressed as:

ln !C= = V0 − bC
[C

[C + 1
�= +

[C

[C + 1
ln ,̃ C

= + ñ C =, ∀= ∈ C (31)

where: ,̃ :
= ≡
( (1−X)W:"+X).",=+W:(,=.(,=

%U
) ,=

�1−U
=

, ,̃D
= ≡

.�,=+(1−X)WD".",=+W
D
(,=
.(,=

%U
) ,=

�1−U
=

, and �= is the level of

pollution derived by using the annual average concentration of PM2.5 as a proxy, respectively.

The equation (31) gives the relationship between the population of type C worker in = and the air

pollution and the real wage in =. We estimate (31) to obtain the values for bC and [C .

This method, of course, could be prone to endogeneity issues. Specifically, the OLS estimate

of bC can be overestimated (in terms of magnitude) if an unobserved productivity of the services

sector raises both the services sector share in the city as well as the labor supply to the city.

Similarly, the OLS estimates of [C tend to be underestimated by the existence of unobserved

amenities that attract workers. On the other hand, unobserved productivity shocks may cause an

overestimation of [C . We borrow from existing studies to address these identification concerns.

For air pollution terms that are critical in estimating bC , we follow Freeman et al. (2017) and

instrument air pollution (measured by PM2.5 concentration) by the SO2 emission from thermal

power plants within the up wind direction from the city (excluding that from their own city).

The identification assumption is that the thermal plant emission from upwind locations affect

the city’s worker population only through its impact on air pollution conditional on the control

variables. For the estimation of [C , we benefit from Baum-Snow et al. (2018) who estimated the

impact of road infrastructure in 2010 on the employment and economic outcomes of Chinese

cities. They instrument 2010 infrastructure variables with 1962 infrastructure variables. For

identification, we assume that the 1962 infrastructure affects the population of 2010 skilled

(unskilled) workers only through the real wage paid to them conditional on the controls.

Through these estimations, we try to verify that the model’s equilibrium condition holds

in the real world in a meaningful way. Our estimates of labor supply elasticities, [C , welfare

effects of air pollution, bC , and the Pigouvian tax parameter, l, are within reasonable ranges

compared to the existing studies, and are consistent with the model’s assumptions. The details
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Table 1: Parameter Values

Parameter Value Source
\ 5 Baum-Snow et al. (2018)
X 0.011 Shapiro and Walker (2018)
U 0.87 Estimated (expenditure share on housing, based on China Statis-

tical Yearbook 2011)
g1 1.68 Estimated (applying equation (53) in the Appendix to China’s

export and import)
[: 3.52 Estimated (equation (31) )
[D 1.16 Estimated (equation (31) )
b: 0.013 Estimated (equation (31) )
bD 0.0095 Estimated (equation (31) )
d 3.45 Estimated (Search the value that minimize observed and model

expenditure share over three goods category, at the Provincial
level))

l 0.466 Estimated (equation (58) in the Appendix)
^ 0.16 Estimated (OLS regressing PM2.5 on industry and consumption

emissions)
Source: Author

of the calibration and estimation is explained in Section A.4. Of course, it should be noted that

our verification through estimation addresses a subset of equilibrium conditions. It is desirable

therefore to have a more comprehensive check on whether the model well replicates the observed

endogenous variables, as Tombe and Zhu (2019) do by exploiting intertemporal changes in the

exogenous variables. Unfortunately, however, the full set of data required for that analysis is

available only for 2010, preventing such an exercise that requires a city-level panel dataset.

Minding these limitations, we examine how the qualitative results of the simulation change by

the choice of these parameters in Section 5.

We calibrate the following the remaining parameters borrowing the knowledge from existing

literature: the Fréchet dispersion parameter for manufacturing productivity, \, and the input share

of pollutant emission (equivalent to the inverse of abatement efficiency), X. Table 1 summarizes

the calibrated and estimated parameters used in the simulation exercises.
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4 Simulation Exercises to Study the Model’s Properties

The main purpose of this paper is to understand the impact of pollution control policy on

environmental, economic, and welfare outcomes. In what follows, we study several theoretical

implications of the model using the calibrated model. We specifically focus on the exogenous

change to pollution control policy which is captured by b̂6= . This parameter represents how much

the evaluation of local government = is damaged by an increase in industrial emissions from its

jurisdiction. We first examine how a regulatory shock to a particular city =, captured by b̂6= ,

will have spatial impacts on economic and environmental variables. An increase in b6= for city

= affects the outcomes of itself. In addition, it also have varied impacts on other cities. The

signs and the magnitudes of the own effect and the spillover effects are not readily obvious, as

the model accommodates various channels of impact that mutually interfere with each other.

Given this analysis, we further seek for desirable spatial allocation of responsibility to reduce

emissions. Setting an aggregate emission reduction target to 10 percent, we compare various

weighting strategies that differentiate localized reduction responsibility across cities, in addition

to a uniform allocation that assigns the same magnitude (in percent) of reduction responsibility

to all cities. We find that some strategies are superior to the uniform strategy. Interestingly, even

though the stronger pollution control is costly for individual firms and we rule out technological

mechanisms that cause that stricter regulation raises productivity, we find that a few strategies

may result in an increase in national real GDP. We discuss in detail how these strategies are

different in terms of environmental, economic and welfare outcomes.

Throughout the analysis, we examine how the key assumptions of the model affect the derived

elasticities with respect to the shocks in the exogenous variables. Specifically, we compare our

baseline model with counterfactual models that shut-out three important ingredients; the migra-

tion of workers, international trade, and preference for air quality. The counterfactual models

give significantly different outcomes from those of the baseline, meaning that the relevance of

these key assumptions as well as the potential sensitivity to the estimated parameter values.
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As shown in the Appendix A.1, the model allows us to employ the “method of change”

proposed by Dekle, Eaton, and Kortum (2008) to solve for the counterfactual equilibriumwithout

knowing the levels of unobserved variables.

4.1 Impact of Unilateral Policy Change in a City

We first illustrate the spatial propagation of impact from a unilateral policy change in a single

city. As an example, we choose Beijing, Wuhan, and Deyang, and examine how the impact differs

depending on the place the policy shock originates from. Let 8′ ∈ {Beijing, Wuhan, Deyang}

denote the city that receives unilateral policy change. We compute the elasticity of outcome

variables in all the 296 cities with respect to /̂6, which is a vector whose 8′-th element is b̂6
8′ = 1.1

while keeping other elements to b̂6
8
= 1 for 8 ≠ 8′. This means that the city 8′ increases

its regulatory parameter by 10 percent, while other cities keep it unchanged. The choice of

magnitude at 10 percent is reasonable considering the policy context of China around 2010.

China has set national level environmental targets for every Five-Year Plan (FYP), since its 11th

FYP for the years 2006-2010. Under this FYP, a nationwide reduction target of the emission of

industrial SO2 was set to 10 percent of the level in 2005. In the 12th FYP, the SO2 reduction

target was set to 8 percent of the 2010 emission level, while the target of 10 percent reduction for

NOG was added(Aunan, Hansen, and Wang 2018).14 As (29) implies, if � and ." are constant,

the elasticity of /",= with respect to b6= is -1. Therefore, a naive policy response to the national

target to reduce emission by 10 percent is to raise b6 by 10 percent. We thus pick this level

for our reference magnitude in conducting simulation studies. We also experiment with other

magnitudes and find that the relationship with the size of magnitude and the elasticities is linear

in general.15

There are several interesting results that contrast the model to conventional predictions. First,

14. The national reduction target was disaggregated into Provincial level targets, which vary from 0 percent to 30
percent.
15. More precisely, the elasticity is weakly concave, with slightly larger elasticity when the policy magnitude is

smaller.
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as indicated in panel (a) of Figure 1, the elasticity of industrial emission is greater than -1. This

means that if the b6
�48 98=6

rises by 10 percent, Beijing’s industrial emission is only reduced by

9.59 percent. As equation (29) implies, it is not theoretically obvious whether the elasticity of

industrial emission is larger or smaller than −1, because it depends on how aggregate production

�= and manufacturing share .",=/�= changes in response to b6= . Note that the nominal GDP

(�) of Beijing responds positively to the stricter environmental regulation as shown in panel (i).

In this case, a positive scale effect offsets the direct effect of increased b6, and that results in an

elasticity of industrial emission greater than −1. The positive scale effect of the regulation in

this case coincides with the increased employment (thus in-migration) of skilled and unskilled

workers to Beijing as shown in panels (d) and (e). This is an effect that cannot be predicted by

the models without mobility of production factors (Copeland and Taylor 2004).

Regarding the propagated effect to cities outside of Beijing, panel (a) of Figure 1 shows an

interesting contrast to the standard theoretical prediction of the PHE. If a pollution haven emerges,

strengthening the environmental regulations in Beijing will cause an increase of emissions

somewhere outside of Beijing, through the relocation of polluting industry to areas with relatively

less stringent environmental policies. However, as shown in panel (a), the elasticity is everywhere

negative, which means that the PHE does not take place here. The reduced emission from Beijing

is not offset by increased emissions in other places. The environmental impact is even amplified

by the reduced emission outside of the city, induced by Beijing’s local policy. The reason

for this can be seen in panels (d) and (e), that depicts the elasticities of the labor supply of

skilled and unskilled workers, respectively. Beijing attracts both types of labor through the

strengthened regulations, with a higher magnitude for skilled labor (0.099 for skilled compared

to 0.073 for unskilled). Policy changes in Beijing therefore slightly attract labor from almost

all over China, and contract the scale of production scale in places other than Beijing, as panel

(i) suggests. Furthermore, as seen in panel (j), the composition effect which is the share of

manufacturing production in total production decreases everywhere including outside of Beijing.

These structural changes in scale and composition ensure the reduction of emissions everywhere
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in China, in response to policy changes in Beijing.

To understand the reasons why these spillover effects in labor supply and production structure

emerge, we need further elaboration. First, a comparison of panel (g) and (h) reveals that skilled

worker real wage respond in a opposite way as unskilled worker real wage. For the skilled

workers, the real wage decreases in Beijing and increases almost everywhere outside of that

city. Conversely, the unskilled worker’s real wage increases in Beijing but decreases in other

cities. The SEE (spatial equilibrium effect) works here. Skilled workers put more weight on air

quality than unskilled workers as our estimated coefficients satisfy b: > bD , consistent with the

assumption in (1). Due to this, the improvement in air quality in Beijing is large enough for skilled

workers to compensate for the decline in real wages there. As in panel (l), the influx of skilled

workers is associated with the decline in service price in Beijing which contributes to raise the

real wage of the unskilled worker (note that the nominal unskilled wage is fixed by assumption).

Then, both skilled and unskilled labor partially relocate to Beijing, and drive down production

outside Beijing. Furthermore, the increase in b6 in Beijing raises the unit production cost of

manufacturing there as in (10), which has spatial spillover effect on the manufacturing price index

as in panel (k). This affects manufacturing production costs everywhere in China because the

sector uses manufacturing intermediates as its inputs, making the response of the composition

effect negative everywhere in China as in (j). These complex but rich relationships among the

variables all work together to influence how our environmental variables are determined.

For price indices, note that the magnitude of the manufacturing price change is slightly

smaller in the regions surrounding Guangdong Province and Shanghai, that are close to the

international port. Due to better access to international markets, these areas trade less (in terms

of share) with Beijing in the initial equilibrium. Therefore, the impact of unit cost increase in

Beijing due to stricter regulation is mitigated. Panel (l) shows the elasticity of services prices,

%( . Only ‘own’ elasticity is negative while the others are positive. This is consistent with

the responses of labors in panels (e) and (f). The services sector in Beijing benefits from the

increased labor supply that drives down wages, while other cities will be affected by the reduced

29



labor supply, as well as increases in the manufacturing price index as this is an input in the sector.

In summary, the economic implication of a unilateral policy change in our model is thus

substantially different from the traditional PHE world. Stricter regulations in Beijing do not raise

industrial emissions in other cities. Furthermore, higher b6
�48 98=6

is not an economic burden for

Beijing, while causing a slight damage to outside cities.

4.2 Where the Shock Originates Matters

By comparing the results of the same exercise for other epicenters of the shocks, namely Wuhan

and Deyang, we examine whether these spatial patterns of the impact are universal. Figure A.4

shows the results for the city of Wuhan, the capital city of Hubei Province located in the central

part of China. Figure A.5 shows the same for Deyang, a city in Sichuan Province. The spatial

patterns of the propagation are fairly contrasting. As the panel (a) of Figure A.4 depicts, a

policy shock in Wuhan reduces the industrial emission of neighboring cities. However, as the

distance from the origin grows, the magnitude of elasticity shrinks more rapidly than the case

of Beijing, reaching close to zero in the middle distance from Wuhan. Then, the elasticity again

declines (magnitude increases) slightly when going much further. In contrast to Beijing, the

emission elasticity is no longer monotonic with respect to the distance from Wuhan, showing an

inverted V-shaped curve. The example of the shock from Deyang, in Figure A.5, shows a more

exaggerated picture. In panel (a), the policy shock in Deyang is sown to cause a PHE in cities

relatively closer to Deyang and the color turns red, except for a few direct neighbors.

4.3 Sensitivity to the Model’s Key Assumptions

The model is different from the standard approach used to study the impact of local pollution

control policy on national or global economies in three aspects. First, it allows for the production

factor (workers) migration between cities. Second, workers care not only for their economic

welfare but also environmental quality. Finally,it explicitly adds international trade to a domestic

trade model. We ask what are the roles of these assumptions in determining the observed spatial
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Figure 1: Illustration of the Spatial Effect of Policy Shocks from Beijing

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage (i) Scale Effect (Nominal GDP)

(j) Composition Effect (k) Manufacturing Price (%" ) (l) Services Price (%()

Source: Author
Note: The maps depict elasticities computed against 10% change in the regulation parameter of Beijing (b6

�48 98=6
).

Red colour indicates the positive computed elasticities, while the blue indicates the negative ones. The midpoint of
the color palette is set to zero.
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Table 2: Counterfactual Models

Feature NMTW NTW NW Benchmark
Domestic Migration x o o o
International Trade x x o o
Preference for Air Quality x x x o
Source: Author
Note: This table compares the features of the four models. "o" indicates that the
model considers the feature as one of model’s key mechanisms. If "x", the model
treats the feature as restricted to zero.

effects.

To examine how sensitive the results on these assumptions, we compare three counterfactual

models as explained below. Table 2 summarizes the features of the models we compare. Firstly,

NMTW is a no-migration, no-trade, and no-welfare effect model. This counterfactual assumes

that workers do not move from their current city, that trade takes place only within China, and

that air pollution does not harm worker’s welfare. Note that this is equivalent to a domestic

trade version of the model of Eaton and Kortum (2002) with pollution as a regulated production

input. The NTW (no-trade and no-welfare effect) model relaxes NMTW by allowing domestic

migration. But, international trade is still ruled out, meaning that the geographical scope of

migration and trade is only within the domestic arena. The third counterfactual, NW, introduces

international trade. Through this change, goods gain a wider scope of mobility than workers

because they become mobile across international borders.

Figure 2 shows the features of the four models using the results of simulation for a unilateral

10 percent increase in Beijing, by setting ̂b6
�48 98=6

= 1.1 while keeping it to 1 for the others.

Panel (a) compares the elasticity of Beijing’s industrial emissions to its own policy change.

All elasticities are negative and close to -1. Panel (b) plots the relationship between the city’s

distance to Beijing and its elasticity for each of four models. The red is for the NMTW model.

Elasticity is negative for the cities near to Beijing then turns positive as the distance grows.

This normal domestic trade model shows that the pollution haven effect (PHE) occurs in space.

The negative elasticity nearby cities corresponds to the effects on the manufacturing price index
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captured in the panel (c). Due to the linkage through costly trade, the price index (i.e. input

price) of the nearby cities increases more than that in the distant cities, pushing the polluting

production to relatively further locations. If domestic migration is allowed, the graph for the

NTW model in blue shows that the curve becomes steeper than the case of the NMTW. The

decline in real income near Beijing due to increases in the price index and the reallocation of

manufacturing make the worker migrate to cities further from Beijing. Migration flow outward

from the Beijing area makes the response of emissions more elastic than in the case of MNTW.

Then, introducing international trade shifts theMTW curve down, as the graph for the NWmodel

(in green) shows. By introducing international trade, firms in China face price competition with

foreign firms. Stricter regulation in Beijing increases input costs in China through the increases

in the price index, %" , with a larger magnitude than in the foreign market. This decreases

China’s competitiveness in manufacturing and reduces the production scale of manufacturing in

the cities in China. As a result, the elasticity of emission for the NW model is lower than for the

NTW model, and the area with negative elasticity expands. Finally, adding the preference for

air quality to the NW model delivers our benchmark model. As we can observe from panel (b),

introducing this preference substantially reduces the slope of the emission elasticity with respect

to the distance from Beijing. In the benchmark model, both skilled and unskilled workers care

about air quality when choosing a residential location. Since Beijing and nearby areas reduce

emission and pollution, both skilled and unskilled labor migrate toward Beijing. This shrinks

the scale of production outside the Beijing area, and offsets the PHE by the increase in the price

index.

In contrast to the NTWmodel where tougher environmental regulation works as a centrifugal

force on skilled labor, in the benchmark model it is a centripetal force. On the other hand, note

that tougher regulation is always a centripetal force for unskilled labor. This happens due to

the two substitutions that unskilled labor has between skilled labor and emissions. A tougher

regulation of emission raises the price for emission, thus the factor demand for production shifts

to demand more labor. However, due to the higher labor supply elasticity of skilled labor
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([: > [D), skilled labor moves more sensitively in response to changes in the real wage, under

the NW setting where they do not care about air quality. Unskilled labor is therefore a substitute

for both emissions and skilled labor in the production of manufactured good and services.

In summary, the assumptions on migration and international trade play important roles

in determining the behavior of the model. Allowing for migration or not in the model, or

incorporating the welfare effect of pollution for workers, will significantly affect the degree of

“distance decay” of the elasticity of emissions with respect to a cities’ distance from the epicenter

city. Disregarding the migration or welfare effect of air pollution might lead overstatement of

the local impact of stringent pollution control policies. The migration of workers may work to

mitigate such local impacts, especially if they care about pollution as studied by Chen, Oliva,

and Zhang (2017) and Freeman et al. (2017). Ignoring international trade may also lead to an

exaggeration of the local effects of regulation and the potential of the pollution haven effect by

missing the channel of foreign demand.

4.4 Comparing Aggregate Impacts of Local Policy

The spatial impact of local environmental policy differs with the location of any change that

occurs. This suggests that the impact of local policy on aggregate outcomes may also vary

depending on where the policy change happens. To show this, Figure 4 depicts the elasticities

of the aggregate variables with respect to a local 10 percent increase in pollution control policy.

The color and darkness of each map represent the sign and the magnitude of the elasticity of

the national aggregate of the outcome variables with respect to this increase in the regulatory

parameter b6= in each city.16

The elasticity of the aggregate emissions is depicted in panel (a). The elasticity is in fact

highly correlated with the size of emissions from each city, with a correlation coefficient of

-0.999. This is consistent with the previous observation we examined in the case of local policy

in Beijing (and other two cities), where the elasticity of local emissions to policy in its own city

16. Average exposure to air pollution is average PM2.5 concentration weighted by share of population.
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Figure 2: Model Comparison

NMTW NTW NW Benchmark
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Note: Panel (b) and (c) depict the relationship between the distance from the city that the policy shock (environmental
regulation) originates in (i.e. Beijing) and the elasticity of industrial emissions (b) or the price index (c) to the shock,
comparing the benchmark model and three counterfactual settings, NMTW, NTW, and NW.

35



Figure 3: Counterfactual Models (Elasticities of Emission and Real GDPw.r.t. Regulation Shock
in Beijing)

(a) NMTW:Emission (b) NMTW: Real GDP

(c) NTW: Emission (d) NTW: Real GDP

(e) NW: Emission (f) NW: Real GDP

(g) Benchmark: Emission (h) Benchmark: Real GDP

Source: Author
Note: The maps compares the four different models assuming the same policy shock (10 percent increase in b6= of the
city =) happens in Beijing.
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is close to -1, while the magnitude of the elasticity of the cities outside of the epicenter city

is far smaller than one, as shown in panels (a) and (b) of Figure 2. Figure 4 panel (b) shows

the elasticity of the nationwide average exposure to air pollution, calculated as the change of

population weighted average of PM2.5 concentration from the baseline. As shown in panel (a) and

(b), emission and exposure elasticities are everywhere negative. There is no case where stricter

policy in a city causes an aggregate increase in emissions or exposure to pollution. Despite the

fact that there are cities such asWuhan and Deyang where stricter regulation causes an increase of

emissions in other cities, this PHE is not large enough to exceed the direct effect on the reduction

of pollution in the epicenter and nearby cities.

The impact on aggregate economic variables is less straightforward. Panel (c) of Figure 4

illustrates how aggregate nominal GDP changes in response to strengthened pollution control

policy in a city. Interestingly, there are 40 cities out of 296 whose increases in regulatory strength

lead to a positive change in aggregate GDP. These cities tend to concentrate on the eastern coast

where the most densely populated cities in China locate, such as Beijing, Tianjin, Shanghai,

and Guangzhou locate. As confirmed in panel (i) of Figure 1, a unilateral change of regulatory

strength in a city will increase the nominal GDP of its own and nearby cities while slightly

reducing that of others. For those 40 cities with positive elasticities of aggregate nominal GDP,

the positive effects on GDP of its own and nearby cities surpasses the negative effects for the

others. Panel (d) depicts the impact on aggregate real GDP. This elasticity is highly correlated

with that for the nominal GDP. For this case, there are 36 cities whose real GDP elasticity is

positive. If environmental regulation is strengthened in one of these 36 cities, it will contribute

to overall economic growth.

The economic impact of policy tends to favor unskilled workers more than the skilled. This

is shown from the decomposition of the elasticity of real GDP into the effects on skilled and

unskilled real incomes as in panel (e) and (f). Panel (e) and (f) reveal that skilled and unskilled

workers face different consequences in terms of national average real income. For the skilled

workers, national average real wage declines in most cases, except for 13 cities which are mainly
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located in the western and northern peripheries. On the contrary, the average real income of the

unskilled increases if policy change takes place in the majority of coastal cities. There are a total

of 108 cities that show the positive elasticity of average unskilled real wages.

Panels (g), (h), and (i) show the welfare elasticities with respect to the tightening of policy in

each of 296 cities. The average welfare shown in panel (g) is calculated as the weighted average

of skilled and unskilled welfare shown in (h) and (i).

5 Quantifying the Impact of National Level Policies

In the previous section, we examined the model’s comparative statics of a unilateral policy

change in a single city. The model also allows us to study the impact of pollution control policies

under more realistic situations. Since the 11th Five-Year Plan (FYP), the government of China

has set national level reduction targets of major pollutants. For example, in the 11th FYP that

covers years from 2006 to 2010, a 10 percent reduction in aggregate SO2 emissions to the level

of 2005 was set as the target. To achieve this nationwide target, a complex political process is

followed to assign the decomposed targets to provincial and prefecture level administrations as

their responsibilities for reduction. These regional targets are not uniform. Richer and populated

areas have been assigned stricter targets, and the provincial targets vary from 0 percent to 30

percent during the 11th FYP (Stoerk 2017).

In what follows, we examine the impact of control policies at the national scale and the

implications of different strategies on how to allocate reduction responsibilities across space.

More specifically, we focus on the case where China tries to reduce aggregate (the national sum

of) industrial emissions by 10 percent, reflecting the policy context in the 11th and 12th FYP, as

discussed in the previous subsection. To reduce aggregate emission by 10 percent, how should

the central government allocate reduction responsibilities across regions?

To answer this question, we compare the following six hypothetical responsibility allocations

that achieve 10 percent reduction in aggregate emissions. In the model, our policy variable is b6= .
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Figure 4: Comparing Aggregate Impacts across Epicentres (Benchmark Model)

(a) Industrial Emission
(b) Average Exposure to Pollu-
tion (c) Nominal GDP (Scale Effect)

(d) Real GDP (e) Agg. Skilled Real Income (f) Agg. Unskilled Real Income

(g) Average Welfare (h) Skilled Welfare (i) Unskilled Welfare

Source: Author
Note: The maps depicts the elasticity of the national aggregate of the variable of interest with respect to 10 percent
increase in b6= of the city =.
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Table 3: Targeting Strategies

Name Weighting variable (G) Constant (`G , mean and CI )**

(1) all Equally weighted (G= = 1,∀= ∈ C)
0.1039

[0.1038, 0.1040]

(2) zm Industrial emission
0.0277

[0.0275, 0.0278]

(3) popden Population density
0.1089

[0.1075, 0.1102]

(4) Rin_u Elasticity of average unskilled real income*
0.0802

[0.0759, 0.0844]

(5) WELF Elasticity of average welfare*
0.0498

[0.0495, 0.0500]

(6) TP Inverse of time to nearest international port
0.1099

[0.1078, 0.1121]
Source: Author
Note: * Weight is zero for cities with negative elasticity.
** "Constant" (`G) for the equation (32) in the third column is calculated as a result of simulation. The square bracket
in the third column shows the confidence interval of the estimated `G

As in equation (28), this parameter is an exogenous factor determining the Pigouvian emission

tax Z= charged to industrial firms in city =. In the following policy experiments, we compare

different ways to set the reformed policy b6
′
= ,∀= so that the new equilibrium generates 10 percent

less aggregate emission compared to the original equilibrium. There could be infinitely many

options in how to set b6
′
= to achieve an aggregate 10 percent reduction in emission. To simplify

the discussion, we model the six policy allocation strategies as follows.

Let G= denote the weight assigned to city = with
∑
=∈CG= = 1. Then, the reformed pollution

control policy for the city =, b6
′
= , satisfies:

b
6′
= (G)
b
6
=

= 1 + `GG= (32)

where `G is a constant. Equation (32) implies that city =’s new regulatory parameter (b6
′
= ) is

100×`GG= percent higher than its original, b6= . We then call the distribution of G= across = ∈ C the

allocation "strategy" of the policy change to achieve the targeted national reduction in emissions.

Table 3 summarizes the hypothetical strategies for our experiment; these are explained below.

The simplest reference strategy is to assign the same magnitude of policy change to all the cities,
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which is called the "all" strategy. In this case, G= = 1/#,∀=. Regarding the constant, `G , we

search for the value that achieves a 10 percent decline in aggregate emissions by iterating the

equilibrium calculation until the aggregate emission reduction converges to the target. For this

"all" strategy, the average of `0;; equals 0.1039, which means that all cities increase b6 by 10.39

percent to achieve 10 percent reduction in aggregate emissions.

One possible way to differentiate the allocation of reduction responsibility across cities is to

assign higher weights to those cities where the problem is more serious. The second and third

strategies are examples of this. The second strategy "zm" adjusts the weight, G=, equal to city =’s

industrial emissions in the observed equilibrium, as of 2010 in our exercise. This ensures that

large emitters face more stringent tightening of the regulations. While this strategy intuitively

seems to be an efficient way to reduce aggregate emission, it is not obvious whether it is superior

to other strategies in terms of welfare and economic outcomes. The third strategy, "popden",

is another example of a strategy to assign targets according to a current observable conditions.

In this case, we consider that the central government tries to prioritize cities with large affected

populations. Then, it sets G= equal to =’s population density.

Instead of referring to the observed city characteristics, suppose that the central government

knows the elasticity of aggregate outcomes with respect to local unilateral policy change in each

city, as summarized in Figure 4. The fourth and fifth strategies utilize these known elasticities

for unilateral policy intervention to cities. Suppose that the central government wants to achieve

reduction targets without reducing the economic benefits of low income people. The "Rin_u"

strategy intuitively aligns to this desire of the central government. This strategy assigns the

weight according to the elasticity of average real incomes of unskilled workers that is depicted

in the panel (f) of Figure 4. There are many cities whose tightening of regulations negatively

affects the average real income (those in blue in the map). We set the weight for these cities at

zero. In the "WELF" strategy, we assign a weight equal to the elasticity of the average welfare as

shown in panel (g) of Figure 4, because higher welfare gains are expected from the policy. We

also add a strategy, "TP", that assigns the weight (G=) according to the inverse of the travel time

41



to the nearest international port from the city.

As revealed in the analyses on the unilateral policy change in a single city in the previous

section, workers’ preferences for air quality play an important role in determining the spatial

impact of policy. Although we use estimated values for these parameters that are quite similar

to an existing study by Chen, Oliva, and Zhang (2017), the sensitivity of the simulation results

to different parameter values should be checked. We thus conduct a parametric bootstrap using

the estimation results for bC , similar to Faber and Gaubert (2019). Specifically, we sample the

alternative parameter values from a normal distribution with a mean equal to the point estimate

and a standard deviation equal to the standard error of the estimate (adjusted by the delta method).

This bootstrap procedure is executed 100 times. For each trial, we calculate the changes in the

equilibrium outcomes for six different strategies and stack the results to obtain the mean effect

and its confidence interval.

Simulation Results The simulation results for the six targeting strategies summarized in Table

3 are shown in Figure 5. Panel (a) compares the impact on skilled worker welfare across the six

strategies. Black graphs show the average and the 5 percent to 95 percent confidence interval as

a percentage point change, simulated using the benchmark model. For all strategies, the impact

on the skilled welfare is positive on average. The lower bound of the confidence interval at 5

percent is negative for all six strategies, suggesting that the welfare effect of the pollution control

policy to reduce national emissions by 10 percent on the skilled labor is volatile with respect to

the choice of parameter b: that captures the preference of skilled workers for better air quality.

Among the six strategies we examine, "Rin_u" strategy has a relatively higher average impact,

but its variation is much larger compared to the other five strategies. We assume that the "Rin_u"

strategy increases regulation a lot in a limited number of cities while keeping other cities from

changing their level of environmental control. The result of the "Rin_u" strategy shown in panel

(a) suggests that concentrating control intervention in a limited number of locations may deliver

higher welfare gains on average, but that this outcome can be more sensitive to the unknown
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preference parameters.

Panel (b) depicts the impact on the unskilled worker’s welfare. The average impact is positive

for all strategies. What is more, for each of the six strategies, the entire confidence interval stays

on the positive side. Thus, pollution control policy is in general beneficial for the unskilled, and

its sign is less sensitive to the preference parameter than for the case of the skilled worker.

Panels (c) and (b) show more clear contrasts of outcomes between the skilled and unskilled.

While the average real income of the skilled workers always declines under stricter pollution

control policy, unskilled workers are always better off from such changes. For both skilled and

unskilled workers, the magnitude of impact is the largest for the "Rin_u" strategy, while they are

the most sensitive to the parameter values. As shown in panel (e), strengthening pollution control

slightly reduces real GDP, but the magnitude is small and sometimes not substantially different

from zero. The "Rin_u" strategy shows the outstanding sensitivity of this effect with respect to

the choice of parameter values compared with other strategies, with a slightly positive average

effect. Exposure to pollution will surely decline with the policy intervention, as shown in panel

(f). Concentrating intervention to limited locations as in the "Rin_u" strategy will achieve the

largest decline in exposure to pollution.

For all the panels, the red cross mark shows the average impact in the case where international

trade is shut down. By comparing the cases with and without international trade, we can see that

international trade pushes the impacts that favor the unskilled workers. Without international

trade, the benefits for skilled workers shift up while those for unskilled workers shift down.

This is especially so for the average real income of unskilled workers, as this is negative when

international trade is absent while it is positive with trade.

6 Conclusion

This paper develops a spatial equilibrium framework with endogenous air pollution to quanti-

tatively study the impact of pollution control policies on welfare, economic, and environmental
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Figure 5: Comparing Strategies across the Models
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(b) Unskilled Workers’ Welfare
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(c) Skilled Worker’s Real Income
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(d) Unskilled Worker’s Real Income
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(e) Real GDP
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(f) Average Air Pollution Exposure

Source: Author
Note: These graphs depict the bootstrap mean and 5 percent confidence interval of the impact of nationwide policy to reduce 
aggregate emissions by 10 percent, as a percentage change of concerned outcome variables, across the six different targeting 
strategies. The black circle shows the mean of the effect and the lines stretching out from the circle shows the confidence 
interval. The red cross mark showse mean of the impact when assuming China is a closed country.
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outcomes at regional and national scales. We calibrate the model to the Chinese economy’s

situation in 2010 at the level of prefecture-level cities. Some of the important parameters are

estimated by exploiting the model’s equilibrium conditions. To the best of our knowledge, this

is the first attempt to explicitly incorporate endogenous air pollution into a quantitative spatial

equilibrium framework. In our model, pollution control regulation is costly for firms as it may

cause a reallocation of polluting industries to regions with more lax regulations, while this PHE

can be (partially) offset by migration of workers who value air quality as a residential amenity.

We conduct a series of hypothetical simulations to study the implications of our theoretical

model in a realistic setting. This approach allows the study of how a unilateral change of

environmental policy in a single city can affect the city itself and other cities in China. In

contrast to conventional trade-environment models, our spatial equilibrium framework with

worker migration exhibits some cases where local environmental regulation delivers a positive

economic benefit, even though regulation imposes additional costs on firms. Furthermore, in

some cities, an increase in the local regulatory level may bring a positive economic return in terms

of aggregate real GDP. These results emerge due to worker demands for better environmental

quality and to let them migrate to an area where air pollution is reduced. In such cases, stricter

regulation works as a centripetal force that attracts workers to the regulated regions, which

coincidentally expands the scale of economic production.

Our approach is not free from shortcomings. First is that our discussion rests only within

a static framework, ignoring the implication of dynamic changes. While our model can be

regarded as a description of a steady state that will be reached in the long-run, this does not

exclude the possibility that the observed results may not hold if dynamics are taken into account.

Another caveat lies in the simplification of environmental quality into a single air pollution

measure. While environmental quality has many dimensions, in the present paper we only care

about ambient quality. Other important dimensions, such as water quality, soil quality, noise,

radioactive pollution, biodiversity, and scenic beauty, are not covered. Moreover, within the

category of the ambient pollution, the argument is simplified to where local air pollution can be

45



represented by a single measure, PM2.5 concentration. There are other important forms of air

pollution such as nitrogen oxides, carbon monoxide, sulfur dioxide, and PM10 (which is a fine

particulate matter that is greater than PM2.5). We also miss the emission of global pollution

that destroy the ozone layers and cause greenhouse gas effects, such as chlorofluorocarbons and

carbon dioxide.

However, our primary interest is in that local air pollution that directly affects people’s health

and their economic behavior, including their choice of residential location. PM2.5 is one of the

most commonly known pollutants that directly affects human lung and cardiovascular systems.

Furthermore, its concentration is closely linked to other pollutants that have similar effects on

human health. Therefore, we believe that focusing on PM2.5 is a reasonable generalization to

avoid overcomplexity and to overcome data limitations, without causing serious biases in our

analysis.
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A Appendix

A.1 An Algorithm to Obtain Counterfactual Equilibrium using Changes

This appendix describes a practical procedure to solve the counterfactual equilibriumof themodel

using the “change,” which is the ratio of the counterfactual equilibrium value of variable G to that

of its original (observed, current equilibrium value).17 We denote the change of variable G as

Ĝ = G′

G
, where G ′ is the counterfactual value of variable G. The following discussion summarizes

the procedure for solving exogenous changes in trade cost ĝ=8 , manufacturing productivity,

�̂",=, services productivity, �̂(,=, and/or strength of local pollution control b̂6,=. Note that we

do not have to know the levels of unobserved exogenous variables consistent with the current

equilibrium, �",=, �(,=, and b6,=.

1. Initial guess on factor price changes (skilled wage and Pigouvian tax for pollution), F̂:=

and Ẑ=

2. Solve for %̂",= and %̂(,= consistent with F̂:= and Ẑ= using

2̂= =

[
F̂:=

W:
"
%̂",=

W"
"
%̂(,=

W(
"

]1−X
Ẑ=
X

(33)

%̂",=
−\
=

∑
8

c=8 ĝ=8
−\
2̂8
−\
�̂",8

\
(34)

%̂(,= = �̂(,=
−1
F̂:=

W:
(,=
%̂",=

W"
(,= (35)

3. Using the price vectors obtained in the previous step, update the trade shares according to:

ĉ=8 =
(ĝ=8 2̂8)−\ �̂",8

\

%̂",=
−\ (36)

4. Using the vectors of price change obtained by the previous step, update the general price

17. This approach was first proposed byDekle, Eaton, and Kortum (2008), and has been widely used in the literature.
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index �%) ,= and expenditure share ĵ 9 ,=, 9 ∈ �, ", ( as follows:
�%) ,=1−d

= j�,= + j",=%̂",=
1−d
+ j(,=%̂(,=

1−d
(37)

�j�,= = 1�%) ,=1−d , ĵ",= =
%̂",=

1−d

�%) ,=1−d , ĵ(,= =
%̂(,=

1−d

�%) ,=1−d (38)

5. The expenditures on manufacturing and services goods, as well as their production in the

counterfactual equilibrium are given by:

� ′",= = ĵ",=j",=
(
F̂:=F

:
=!

:
= + FD=!D=

)
+ (1 − X)W"".",= + W"(,=.(,= (39)

. ′",8 =
∑
=

� ′=c
′
=8 (40)

. ′(,8 = �
′
(,8 = ĵ(,=j(,=

(
F̂:=F

:
=!

:
= + FD=!D=

)
+ (1 − X)W(".",= (41)

6. Update land price and emissions:

Â=
1−l

=
Ẑ=

b̂6,=
(42)

/̂",= =
.̂",=

Ẑ=
(43)

�/',= = ĵ",=Â= (44)

7. Then update the level of pollution:

� ′= = 5 ( -̄)
(
/",=

′ + /',= ′
) ^ (45)

8. Update labor force distribution for each type C = {:, D}:

!̂C= =

(
4̂C=F̂

C
=
�%) ,=−UÂ=U−1

) [
∑
9

!C
9

!CC

(
4̂C
9
F̂C
9
%̂) , 9

−U
Â=′

U−1
) [ (46)
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where

4̂C= =
exp(−bC� ′=)
exp(−bC�=)

(47)

9. The skilled wage and total value added (GDP) are then updated by:

F:
′
= =

[
(1 − X)W:

"
+ X

]
. ′
",=
+ W:

(,=
. ′
(,=

!̂:=!
:
=

(48)

and

� ′= = F
:′
= !̂

:
=!

:
= + FD= !̂D=!D= (49)

10. Obtain new values for factor prices F̂:= and Ẑ= from:

F̂:= =
F:

′
=

F:=
(50)

Ẑ= = �̂=
1−l

b̂6,= (51)

11. Iterate 2 to 10 until values converge.

A.2 Details of the Data

Population and value added Our unit of analysis is those prefecture-level cities or counties that

are directly under Provinces plus the four direct-administered municipalities of China as of 2010,

within the Eastern half of the mainland China. This area basically overlaps with the historical

territory of the Han dynasty (B.C. 206 - A.D. 220). Four provinces/autonomous regions, Inner

Mongolia, Xinjiang, Qinghai, Tibet, and islands (such as Hainan Province) are dropped from the

analysis. We make this choice because the western part of China dropped from the analysis is

economically and demographically very sparse compared to the Eastern half, holding only 4.3

percent of total population while occupyingmore than 51 percent of the land area. We thus follow

other studies such as Baum-Snow et al. (2018) in keeping our focus on the Han part of China.

The area consists of 296 geographical units (270 prefecture-level cities and 26 counties directly
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under the Provinces). The Economic variables, such as the value added of primary, secondary,

and tertiary industries, are taken from the China City Statistical Yearbook and China Region

Economy Statistical Yearbook of 2011 that report their values as of 2010. Employment variables

are constructed benefiting from the online supplementary materials of Baum-Snow et al. (2017)

that originally aggregated the 2010 Population Census at the level of counties. In the county-level

aggregate of the census, the employment in primary, secondary, tertiary industries is provided.

These are summed to the level of prefecture cities as the employment of three industry strata to

obtain the aggregate labor force in the location. Then, we compute the amount of skilled labor

by multiplying the total labor force with the share of population with at least a senior high school

degree. The remaining labor is treated as unskilled.18

PM2.5 Concentration The yearly PM2.5 concentration is computed from raster images provided

by Donkelaar et al. (2016), which are available from fizz.phys.dal.ca/~atmos/martin/

?page_id=140. This is the estimated level of PM2.5 concentration on the surface using the

satellite image of aerosol. Raster images cover all the ground surface of the earth annually

since 2000. A growing number of recent studies use this set of satellite images of PM2.5

to recover the spatio-temporal variations of China’s air pollution, especially for obtaining the

spatially disaggregated situation before 2014 when China started detailed and frequent official

reporting of air pollution.19 There are a few advantages in using this satellite data. Until the

early 2010s, China had reported situations of local air pollution for only a limited number of

cities (only around 100 cities). Since the satellite images by Donkelaar et al. (2016) are the

raster information of 0.01◦× 0.01◦ mesh containing the annual average concentration of PM2.5,

covering all over the world sine 1998, the researchers basically calculate the level of pollution of

18. Combes et al. (2019) define skilled labor as employees received at least technical or vocational training after
completing senior high school, which may be stricter than our definition of the skilled labor. The country-level
aggregates we use do not report the the number of people enrolled in technical or vocational schooling after senior
high school, while the number of people with college degree is available. Therefore, we do not know from our data
how many of those who completed senior high but not college received additional education such as technical and
vocational training.
19. Examples include Chen, Oliva, and Zhang (2017) and Freeman et al. (2017).
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an arbitrary geographical unit. Secondly, as argued by Chen et al. (2013), the official data on air

pollution seem to be incorrect because of manipulation by the local authorities. Satellite images

are generally considered to be more reliable. The spatial distribution of the annual average

concentration of PM2.5 within each prefecture-level unit is depicted in Figure A.1.

Pollutant Emission Inventory We rely on satellite based data on the emission of the ambient

pollutants that are the primary sources of PM2.5. We use the MIX database from MEIC20,

maintained by the researchers from the leading universities in China. The database provides the

gridded (0.25◦× 0.25◦) emission inventory of major pollutants such as SO2, NOG , and primary

PM2.5. The monthly gridded emission inventory is used to construct the annual sum of emission

in each grid and vectorize the raster data by calculating the mean level of emission for each

prefectural polygon.

Particulate matter is formed primarily through combustion of fuels as well as natural sources.

In addition, secondary particulates emerge from other pollutants such as SO2 and NOG , then

finally form the particulate matter observed in the air. When we estimate (26) to obtain coefficient

^ and 5 ( -̃=), we follow Sun et al. (2017) who assume that the PM2.5 concentration in = consists

of the local emission of primary PM2.5 as well as SO2 and NOG emissions that contribute as

secondary sources. For this purpose, therefore, we exploit the emission inventory data of these

important pollutants. Importantly, the MEIC emission inventory provides the local emission of

those pollutants from four different sources; industry, power generation, traffic, and residences.

This allows us to disentangle the emissions from the production side and the residential side,

denoted by /" and /' in the model, respectively. In practice, we calibrate /" by the sum of

the emissions of SO2, NOG , and primary PM2.5 from industry and power generation. For /',

we use the sum of the same set of pollutants from the traffic and residential sources. Table A.1

summarizes the emissions of each pollutants from the four different sources.

20. http://www.meicmodel.org/index.html
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Table A.1: Emission of Major Pollutants from Sources (unit: kilotonne)

Power Industry Residential Transport
SO2 (sum) 7,079.0 19,134.7 3044.9 202.1

(mean) 247.5 66.9 10.6 0.7
NOG (sum) 7,753.8 9,954.0 990.0 6,158.2

(mean) 27.1 34.8 3.5 21.5
Primary PM2.5 (sum) 746.4 5,430.0 4,138.0 442.9

(mean) 2.6 19.0 14.5 1.5
Based on gridded emission inventory dataset from MEIC (http://www.
meicmodel.org/index.html)

Other variables As detailed below, we use a set of control variables in the estimation of labor

supply elasticity, [C , and parameter of disutility from pollution bC . Our identification strategy

use the same instrumental variables and control variables as Baum-Snow et al. (2018), such as

population as well as the share of high school graduates in 1982, and so on. We thus benefit

again from their online appendix. In addition, we also add climate control variables such as

precipitation and temperature since these can simultaneously affect the level of pollution and

people’s residential choice, which is equivalent to the labor supply in themodel. For these climate

variables, we use the satellite images from “TerraClimate” database (Abatzoglou et al. 2018).

21 From the raster files of monthly records, we calculate the annual average precipitation and

temperature within the boundary of each prefecture-level unit.

A.3 Spatial Distribution of Pollution in China

Figure A.1 illustrates the spatial distribution of PM2.5 (particulate matters smaller than 2.5

micrometers) concentration in the populated Eastern half of China (“Han” China) in 2010.

PM2.5 is small particle that is one of the most harmful to the human body. In the area around

Zhongyuan (Central Plain) in the South of Beijing, and including Tianjin, Hebei, Henan, and

Shandong Provinces, the level of pollution is collectively very high. In this area, the long-

21. The data can be downloaded from http://www.climatologylab.org/terraclimate.html
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Figure A.1: PM2.5 Concentration (`/m3) in 2010

Source: Author
Note: Based onDonkelaar et al. (2016), the mean level of PM2.5 within
the boundary of each city is depicted.
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term population-weighted exposure to PM2.5 concentration exceeds 64`6/<3.22 This area also

contains China’s major megalopolises where densely populated cities are clustered across a large

space to accommodatemore than 300million people. By this overlap of pollution and population,

huge numbers of people face significant health risks. The welfare consequences of this unhealthy

spatial distribution are seriously undesirable.

As seen in the introduction, the spatial distribution of PM2.5 concentration is not uniform

across space. Spatially uneven distribution can also be found for the anthropogenic emission of

major ambient pollutants. The maps in Figure A.3 display the spatial patterns of anthropogenic

emission for the threemajor ambient pollutants, sulfur-dioxide (SO2), nitrogen-oxides (NOG), and

the primary emission of PM2.5, produced fromhuman activities.23 Froma visual examination, the

spatial patterns are highly correlated between that of emissions and that of the PM2.5 concentration

level.

The spatial distributions of pollution and emission shown above are highly associatedwith the

distribution of economic activities across space. In short, the agglomerated regions generate a lot

more pollutants and are significantly severely polluted. To see this, we follow the decomposition

proposed by Grossman and Krueger (1995) that separates amount of emissions into (i) scale

effect, (ii) composition effect, and (iii) technique effect. Scale effect is the amount of total

economic production (per area) from a region of a city. Composition is the share of output value

from polluting industry. In our case, this refers to the output share from the secondary sector

(manufacturing and power generation). The technique effect equals to the emission intensity of

that polluting industry, which is the amount of emissions per unit of output value. This reflects

the environmental efficiency of the polluting industries in the region. Furthermore, in models like

this paper presents, the technique effect is proportional to the inverse of the Pigouvian emission

tax imposed on a unit emission, as will be discussed later. More specifically, the decomposition

22. Long-term population-weighted exposure is the average of annual average PM2.5 concentration weighted by
residential population. For reference, the U.S. standard for the long-term population-weighted exposure is 12`6/<3.
23. Primary PM2.5 refers to the emission of particulate matters with a diameter of less than 2.5 micron that is

generated directly from the combustion of fuels and other materials. This is different from the concentration of PM2.5
within a given mass of outdoor air.
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Figure A.2: Decomposition of Industrial Emission

(a) Emission per km2 (b) Scale Effect

(c) Composition Effect (d) Technique Effect

Source: Author
Note: The emission amount is the sum of SO2, NOG , and primary PM2.5 from industrial and power
generation sources. See Section A.2 for the details of the data definition. Scale effect is in 10,000
RMB per km2 and technique effect is in kilo-tonnes per km2. All the data are from 2010. See
Section A.2 for the details of data used.
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is expressed as an identity for the total industrial emission from region 8 as follows:

/8︸︷︷︸
emission

= .8︸︷︷︸
scale

×
.",8

.8︸︷︷︸
composition

×
/",8

.",8︸︷︷︸
technique

(52)

where /",8 is the total emission from polluting sectors (say, manufacturing) in 8, .8 is the total

economic output in 8 including sectors other than polluting sector (such as services). .",8 is

the polluting sector’s output. This decomposition helps us to capture which of the factors of

economic scale, composition of production, or environmental efficiency (regulation) is more

relevant than others in explaining the spatial distribution of pollution and emission.

Figure A.2 collects the maps showing the decomposition of the industrial emissions that

make up the major part of China’s anthropogenic pollutant emissions. Panel (a) illustrates the

industrial emissions, the sum of SO2, NO2, and primary PM2.5 emissions from manufacturing

and power generation. Panels (b), (c), and (d) show the decomposition of Panel (a), based on

the identity (52). Panel (B) shows the scale effect. Its spatial distribution overlaps with (a),

suggesting that scale matters for these emissions. Cities with denser economic activity tend to

emit larger amount of pollutants. Panel (c) is for the composition. Composition is also positively

correlated with the emission. Emissions are likely in large cities with higher secondary sector

shares. On the contrary, the distribution of technique effect shown in panel (d) does not overlap

with that of emissions. Correlations of each of the three factors with emission are 0.775 (scale),

0.536 (composition), and 0.032 (technique), respectively, which supports the visual observation

from Figure A.2 on the relevance of the scale followed by the composition, as well as the

irrelevance of the technique effect. This is in contrast to the evidence on the development of

U.S. manufacturing firms during recent decades, as illustrated by Shapiro and Walker (2018).

They argue that in the U.S., the technique effect has dominated the overall trend in the emissions

of air pollutants. However, note that the correlation between scale effect and technique effect

is -0.606, meaning that emission intensity is lower where economic density is higher. This can
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also be confirmed from panel (b) and (d) of Figure A.2, where the scale shows a east-high west-

low distribution, while the technique one is west-high east-low. In summary, the geographical

distribution of pollutant emission and pollution in China largely overlaps with the distribution of

economic density. Thus, economic agglomeration, especially industrial agglomeration, means

agglomeration of pollution as well. While the environmental efficiency is expressed as the level

to which the technique effect partially offsets the scale effect, it is not large enough to perfectly

cancel out the scale and composition effect.

A.4 Calibration and Estimation

Bilateral trade cost between cities Bilateral trade cost between locations is not directly ob-

servable in our data. In general, there are two approaches to estimate bilateral trade cost from

available data in the trade and geography literature. The first and traditional approach that has

been mainly used in the international trade literature is to recover it by using the gravity equa-

tion with bilateral trade flow data (Head and Mayer 2004). The theory employed in this paper

also yields a gravity equation that allows the implementation of this method. However, the key

limitation of this method is data availability. While bilateral trade data between every pair of

locations are required, these are largely unavailable for domestic trade. For China, Poncet (2003,

2005) and Tombe and Zhu (2019) are among the researchers using this approach. As the Chinese

domestic trade flow matrices are provided only at the level of Provinces and for a limited number

of years, their analyses are restricted to the Provincial level. The second method is to impute

the trade cost using the travel time (or distance) between the pair of locations, as employed

by Donaldson and Hornbeck (2016) and Baum-Snow et al. (2018). Typically, a shortest path

algorithm (e.g. the Dijkstra Algorithm) is used to calculate travel time to reach from one place

to another based on digital maps of transportation infrastructure networks. The calculated travel

time matrix are converted into a bilateral iceberg trade cost matrix using the known parameters

that pin down the relationships between the freight shipment time and the cost. Our focus on the

prefecture-level analysis naturally rules out the first approach because there is no bilateral trade
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data at this level of granularity in China. Therefore, it is necessary to closely follow the data and

methods employed by Baum-Snow et al. (2018) to recover the trade cost matrix.24 Particularly,

we benefit from the online appendix of Baum-Snow et al. (2018) and use the historical highway

network digital maps as of 2010. The Dijkstra Algorithm is used to compute the shortest paths

between each pair of cities.

International Trade Cost For international trade in the " sector goods, we assume that the

trade cost for city 8 is the trade cost to reach its closest international port multiplied by the border

effect. Let g 9
-8

denote the trade cost between 8 and the RoW. Then, assume that g-8 = g1g?>AC (8)8 ,

where, g1 a common border effect and g?>AC (8)8 is the transportation cost to the closest port from

8. g1 can be recovered by applying the gravity equation as explained in Head and Mayer (2004),

by using China’s national exports E, national imports I,25 total production of manufacturing

goods in RoW, .",- , and China’s total expenditure on manufacturing goods �C , as follows:

(g1)−2\ =
EI

(.- − E)(�C − I)
(53)

With \ = 5 as will be explained below, we obtain g1 = 1.68.26

Input shares andWages Data on local skilled and unskilled wages are not available. However,

the average wage in each sector at the national level is provided in China Statistical Yearbook.

Average wage in a sector 9 , F 9 is given by F 9 =
F:!:

9
+FD!D

9

!:
9
+!D

9

. Noting that the production

function in both the manufacturing and services sectors is Cobb-Douglass, F:!:
9
= W̃:

9
+ 9 and

F:!D
9
= W̃D

9
+ 9 follow, where+ 9 is the value added of sector 9 and W̃C9 =

WC
9

W:
9
+WD
9

, C ∈ :, D is the type

24. Another novel approach, which has recently emerged, is to use the freight cost quotations provided by logistics
companies. The advantages of using this approach to two other conventional approaches is detailed in Yang (2018).
25. According to the China Statistical Yearbook 2011, China’s manufacturing exports in 2010 were 10,047 billion

RMB and imports were 6,129 billion RMB. We implicitly assume the trade imbalance (positive net export) in
manufacturing goods is offset by the net import of agricultural goods.
26. Baum-Snow et al. (2018) instead set g1 = 1.15 based on the review by Anderson and Wincoop (2004). This

number could be too old to be consistent with the data in 2010, and does not necessarily reflect the situation of
developing countries such as China.
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C share in the value added. Using these relationships, we can compute the skilled labor share

using:

W̃:9 =
F: (F 9 − FD)
F 9 (F: − FD)

(54)

It is assumed that the agricultural sector employs only unskilled labor, hence the national agricul-

tural wage is equal to the national unskilled wage FD . Similarly, it is assumed that the financial

intermediation sector employs only skilled labor and that the national skilled wage F: equalises

to the national wage rate in the financial intermediation sector. With these FD and F: , in addition

to the wage rates in the sub-sectors shown in Table A.5, we can obtain the skilled labor share

for each 9 . Among the sub-sectors whose average wage rates are available in the China Statis-

tical Yearbook, one sub-sector (“Agriculture, Forestry, Animal Husbandry and Fishery”) can be

categorized as primary industry (� in the model), four sub-sectors (“mining,” “Manufacturing,”

“Electricity,” and “Construction”) into secondary industry ("), and the remaining fourteen sec-

tors into the tertiary (() industry. Then, we compute the skilled labor share of the � ∈ �, ", (

industry is:

W̃:� =

∑
9∈� F 9! 9 W̃

:
9∑

9∈� F 9! 9
(55)

Given the input shares of intermediate goods in production of the " and ( industries, namely,

W"
"
, W(
"
, and W"

(,=
in (7) and (14), the input shares of skilled and unskilled labor in these industries

are given by WC
"
= W̃C

"
(1 − W"

"
− W(

"
) and WC

(,=
= W̃C

(
(1 − W"

(,=
).27

At the prefecture-city level, we have neither sectoral wages nor skilled/unskilled wages.

Instead, the value added in each of three industries, denoted here by +� ,∀� ∈ �, ", (, is used.

We then use the obtained labor shares and value added to recover the skilled and unskilled wages

in city = by:

F:= =

(1−X)W:
"
+X

(1−X) (1−W"
"
−W(
"
)+",= +

W:
(,=

1−W"
(,=

+(,=

!:=
(56)

27. From China’s input-output table as of 2007 provided in China Statistical Yearbook 2011, we set W"
"
= 0.6859

and W(
"
= 0.1004, respectively.
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FD= =

+�,= +
(1−X)WD

"

(1−X) (1−W"
"
−W(
"
)+",= +

WD
(,=

1−W"
(,=

+(,=

!D=
(57)

Expenditure share (U) We calibrate U using the expenditure shares of consumers provided in

the China Statistical Yearbook 2011. On average, households in China spend 13% of their total

expenditure on housing, thus we set U = 0.87.28

The elasticity of trade with respect to trade cost (dispersion parameter \) There are

several studies that estimate trade elasticity \. While the majority of these are in the context of

international trade, it is possible to find a number of examples on how to apply these estimates in

the study of domestic trade. Baum-Snow et al. (2018) set \ = 5 while experimenting \ ∈ [3, 10].

Tombe and Zhu (2019) sets \ = 4. Bryan and Morten (2019) use the range 4 to 8 in the

context of domestic trade in Indonesia, referring to Allen and Arkolakis (2014) who use the

value of 8 and Bernard et al. (2003) who found that \ = 4. Caliendo et al. (2018) analyze

the heterogeneous impact of local productivity shocks to aggregate the U.S. economy using the

Ricardian model of trade with disaggregated sectors. They employ the estimates of the trade

elasticity of detailed sectors by Caliendo and Parro (2015) that study the welfare effects of

NAFTA on the U.S. economy. While the elasticity varies a lot across sub-sectors, their main

estimates of the aggregate level elasticity (including agriculture, mining, and manufacturing

sub-sectors) range from 3.29 to 4.55. Gervais and Jensen (2019) estimate \ in the context of

the U.S. domestic trade incorporating services sector trade, finding that the mean value of \ for

manufacturing goods is 8.14. Faber and Gaubert (2019) choose \ = 6.1 based on the estimates

by Adao, Arkolakis, and Esposito (2018) as well as Head and Mayer (2014). In summary, there

seems to be no consensus on the value of \ for domestic trade, but previous studies tend to choose

values between 4 and 8. We take \ = 5 following Baum-Snow et al. (2018).

28. This value is the same as Tombe and Zhu (2019) who also study the equilibrium in 2010.

60



Input share of pollutant emission (X) Little is known about the value of X, the input share

of pollutant emission which is also the inverse efficiency of abatement technology. To the best

of our knowledge, Shapiro and Walker (2018) is the only study that provides an estimate for X

consistently with a general equilibrium model with trade like ours. They estimate Xs for detailed

U.S. manufacturing sub-sectors using factory level abatement investment data covering a long

period of time (1990s to 2008). While their estimates of X greatly vary across the sub-sectors,

they report an average for the manufacturing sector as a whole is X = 0.011. Since estimating X

for China is difficult with the currently available data as explained below, we use this value for

the simulation analysis.

Data on abatement expenditure of Chinese manufacturing firms is not available at prefecture-

level granularity. Therefore, it is impossible to choose and estimation strategy similar to that of

Shapiro and Walker (2018). Another possible way to estimate X for China is to use the ratio of

emission levy revenue to manufacturing output, as equation (20), which is a way Shapiro and

Walker (2018) actually avoid. If we assume that X is constant across space, we can technically

recover it only with nationwide total emission levy revenue and the value of industrial output.

While official statistics of the emission levy revenue are available from the China Environment

Yearbook, it should be noted that the levy revenue may cover only a fraction of the wide range

of expenditure that the term Z8/",8 in (20) represents. In fact, the ratio of the total emission

levy to industrial output in China is less than 0.00001. If the estimate of Shapiro and Walker

(2018) for U.S. manufacturing firms is correct, this means that abatement efficiency of Chinese

manufacturing firms is 100 times superior to that of the U.S. firms, which is simply incredible.29

According to a dataset for international comparison by the OECD (https://stats.oecd.org/

Index.aspx?DataSetCode=ENV_ENVPOLICY), the ratio of environment related tax to industrial

29. The system of environmental control is complicated. In China, along with emission levies on designated
pollutants, the government sets the targets for reducing the aggregate emissions of selected pollutants. For achieving
the target, local governments in China uses variety of policy instruments. For example, local governments sometimes
order polluting plants to shut down or relocate. Polluting firms implicitly pay substantial costs for lobbying (or even
bribing officials as reported by Rooij (2006)) in order to avoid such sanctions. Therefore, it seems appropriate to
assume there is more implicit expenditure than actually observed as emission levies that the manufacturing firms in
China spend for realising the observed combination of emission and production.
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output is around 1 percent which can also support our choice of X, even if the assumptions leading

to this number are not clear.

Elasticity of substitution among three category of goods (d) There is only limited guidance

in the literature on the appropriate value of d, the elasticity of substitution among the three

categories of goods. As pointed out by Faber and Gaubert (2019), d should be smaller than the

elasticity of substitution between the varieties within the same category of goods. In our case,

this means that d ≤ \ + 1 should be satisfied. We search for the value of d in this range such that

the model derived consumption expenditure share of manufacturing goods at the national level

is equal to the observed data. This exercise gives the value d = 3.45 that is used throughout the

analyses in this paper.

labor supply elasticity ([C ) and disutility from pollution (bC ) We estimate the elasticity of

labor supply of each type of worker ([C ) as well as the parameters of the welfare impact of

pollution (bC ) that are consistent with our model. Equation (31) is estimated to recover [C and

bC consistent with the model. The existing literature provides guidance on the identification

concerns and possible solutions.30 As discussed in Faber and Gaubert (2019), OLS estimation of

labor supply elasticity, the coefficient on the real wage term, or aggregate real factor income ln ,̃ C
=

in our case, can be downward biased due to unobserved confounding factors in labor demand

and supply. In addition, estimates for bC can also be biased because there is the possibility of

omitted variable bias and reverse causality. For example, as the same as the estimate of the real

wage term, unobserved labor demand shock can be either positively or negatively correlated with

pollution, �=, because that can cause more emission as well as strengthen regulations through

the local government’s endogenous response (28). Furthermore, local amenities consisting �C=,

such as climate characteristics, may simultaneously affect �= and !C=.

To address these identification concerns, we use the set of instruments and controls that Baum-

Snow et al. (2018) use to estimate the causal impact of 2010 road infrastructure on prefecture’s

30. See Faber and Gaubert (2019), Fajgelbaum et al. (2019), and Fajgelbaum and Gaubert (2019).
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demographic and economic outcomes. They instrument 2010 road infrastructure measures

by those of 1962. More specifically, in their main specification, their variables of interests

are the log efficiency road unit and the log time to nearest international port, both reflecting

infrastructure quality in 2010. The efficiency road unit is the length of road infrastructure

weighted by average travel speed within a 450km radius of each prefecture minus the weighed

road length within own prefecture. The time to the nearest international port is the shortest

travel time to the closest international port out of nine candidates. They instruments these 2010

infrastructure variables by their 1962 counterparts, arguing that these instruments are exogenous

to 2010 demographic and economic variables conditional on several historical and geophysical

controls.31 Based on Baum-Snow et al. (2018)’s argument, we instrument ln ,̃ C
= and �= by

these 1962 variables and an exogenous climate variable. The rationale for instrumenting ln ,̃ C
= is

straightforward. 1962 infrastructure variables predict current employment, wages, and industrial

composition well but they are not correlated with unobservable contemporaneous productivity

and amenity shocks. The unobserved shocks that simultaneously affect 1962 infrastructure

placement and contemporaneous productivity are assumed to be eliminated by the set of historical

and geographical controls. For pollution, we instrument this with the SO2 emission from power

plants located in the upper-wind direction of the city. The constructed instruments are similar to

the IV2 of Freeman et al. (2017). Instead of coal consumption by upper-wind thermal electricity

plant, we use the emission of SO2 by power plants, due to data availability. Our IV is the sum

of SO2 emission from power plants with in the 90 degree-sector of 500 km radius from the city,

minus the emissions within own city.

The first stage results are shown in Table A.3. The three variables of interest, the level of

PM2.5 concentration, the log of ,̃ C for C = {:, D} are regressed on the same set of the instruments

31. Baum-Snow et al. (2018) justify that 1962 variables are exogenous to the contemporaneous shocks determining
2010 demographic and economic outcomes based on the historical context of China’s road development during
the pre-economic reform period. In 1962 when China was under the socialist planning economy before economic
liberalisation in the 1980s, the roads were primarily designed to move agricultural goods between villages using
non-motorised vehicles. Therefore, the road development then did not concerned the production and logistics for
the manufacturing goods using late 20th century technologies. At the same time, despite not being designed for
the motorised vehicles, the existence of 1962 roads provided the right-of-the-way for the alignment of the highways
whose planning and construction started in 1990s.
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and control variables. The three variables on the top of the table are the instruments.32 Table

A.4 shows the second stage results. The first two columns are for the OLS estimates, while the

column (3) and (4) show the results of IV estimations. As expected, the OLS estimates on the

real wage terms (ln ,̃ C ) are downward biased compared to the IV estimates. The implied values

of [C from our IV estimates are [: = 3.52 and [D = 1.16, respectively. Interestingly, our IV

estimates on PM2.5 are very close to the estimates of the impact of PM2.5 level on the migration

of skilled and unskilled labor by Chen, Oliva, and Zhang (2017) which are -0.0093 for skilled

labor and -0.0047 for unskilled labor. Given these estimates, the implied values are b: = 0.013

and bD = 0.0095.

Coefficient of policy elasticity to GDP (l) As in (28), the elasticity of pollution control policy

with respect to GDP is 1 − l. Taking the log of (28) and noting that Z= = X .",=/",=
, we have

ln Z= = V0 + (1 − l) ln�= + ln b6= (58)

We estimate l by OLS estimation of (58). Endogeneity concerns come with any omitted

variables that are simultaneously related to Z= and �=. Specifically, the model implies two

reverse causalities that flow from Z= to �=. First, the lowered pollution that is induced by

higher Z= will increase labor supply from the migration equation (30), then positively affect

�=. In contrast, high Z= increases the production costs in the manufacturing sector (10) and

may contract total value added �=. To address these concerns, we instrument ln�= by the

historical market access that is proxied by the 1962 road efficiency unit and the 1962 time to

nearest port. Additionally, to control for any shocks that might be simultaneously correlated with

1962 infrastructure variables and ln b6= , we include a Province capital dummy, an environmental

priority city dummy, the historical level of pollution that is proxied by the level of PM2.5 annual

average concentration in 1999, the log of the distance to coast, and four variables that capture

32. Given that the 1962 log road efficiency unit is not significant for ln ,̃ : and ln ,̃D as shown in Table A.3, we
also estimate the version without this instrumental variable. The second stage results are qualitatively the same.
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1982 demography, as shown in Table A.2. Provincial capital has specific political and economic

importance and it is reasonable to assume that their status as Provincial capitals simultaneously

affected the 1962 infrastructure placement as well as the unobserved shocks to the current

environmental regulations captured in b6. In our sample cities, there are 105 environmental

priority cities whose environmental performance are reported in the annual China Environment

Yearbook. Again, priority cities should have a specific shock in b6 whichmight be also correlated

with the 1962 infrastructure variables if economic development after 1962 affected the probability

of them being chosen as a priority city.

The results are shown in Table A.2. Our IV estimate on the log of GDP is 0.544 which

implies that l = 0.466.

Elasticity of PM2.5 to emission (^) The relationship is specified as in (26). We estimate the

logarithm of the equation by proxying �= using the aerial concentration of PM2.5(`6/2<3) and

/= using the total emission of SO2, NOG , and the primary PM2.5 emissions from both production

and consumption sources (/" and /'). In turn, ^ is estimated by OLS and the value obtained

is ^ = 0.16. The exponential of the constant term plus the residual recovers b6= .
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Table A.2: Estimation of the Environmental Regulation Equation

OLS IV

(1) (2)

log of GDP, [1 − l] 0.645∗∗∗ 0.544∗∗
(0.096) (0.270)

Provincial Capital −0.110 −0.073
(0.170) (0.207)

Priority City −0.243∗∗∗ −0.207
(0.093) (0.132)

log of PM2.5, 1999 0.103 0.129
(0.100) (0.125)

Log km to coast −0.167∗∗∗ −0.182∗∗∗
(0.029) (0.052)

Log prefecture population, 1982 −0.468∗∗∗ −0.384
(0.137) (0.245)

Log city centre population, 1982 −0.099 −0.119
(0.085) (0.099)

Share of population with high school, 1982 0.174 0.249
(0.366) (0.395)

Share of population in manufacturing, 1982 0.507 0.811
(0.501) (0.852)

Constant 4.043∗∗∗ 4.591∗∗
(1.064) (1.881)

Observations 283 283
R2 0.523 0.520
Adjusted R2 0.507 0.504

Source: Author
Note: Heteroskedasticity robust standard errors are given in the parentheses. In the
IV estimation, the log of GDP is instrumented by log 1962 road efficiency unit and
log 1962 time to nearest port as in Baum-Snow et al. (2018). ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table A.3: First Stage Estimates for the Labor Supply Equation

Dependent variable:

PM2.5 ln ,̃ : ln ,̃D

(1) (2) (3)

Log road efficiency unit, 1962 7.514∗∗∗ −0.057 −0.115
(2.363) (0.141) (0.126)

Log time to nearest port, 1962 −2.715∗∗∗ −0.292∗∗∗ −0.222∗∗∗
(1.002) (0.060) (0.053)

Log power plant emission in upwind 0.329∗∗ −0.003 −0.002
(0.141) (0.008) (0.008)

Provincial Capital 4.586∗∗ 0.615∗∗∗ 0.452∗∗∗
(2.253) (0.135) (0.120)

Log prefecture population, 1982 6.823∗∗∗ 0.575∗∗∗ 0.644∗∗∗
(1.899) (0.114) (0.101)

Log city centre population, 1982 −2.048 −0.105 −0.131
(1.493) (0.089) (0.080)

Share prefecture population with high school, 1982 1.253 0.833∗∗ 0.750∗∗∗
(5.420) (0.324) (0.289)

Share prefecture population in manufacturing, 1982 −22.326∗∗ 3.175∗∗∗ 2.273∗∗∗
(8.841) (0.529) (0.471)

Log prefecture area −9.017∗∗∗ 0.117 0.080
(1.431) (0.086) (0.076)

Log prefecture area 0.520 −0.085∗ −0.062
(0.783) (0.047) (0.042)

Log km to coast 1.407∗∗∗ −0.016 −0.013
(0.495) (0.030) (0.026)

West Region −0.283 −0.185∗ −0.179∗∗
(1.668) (0.100) (0.089)

East Region 2.973∗ 0.070 0.071
(1.653) (0.099) (0.088)

Log city centre roughness −3.233∗∗∗ −0.002 −0.016
(0.591) (0.035) (0.031)

Log prefecture roughness −2.298∗∗∗ −0.035 −0.041
(0.496) (0.030) (0.026)

Log precipitation −0.007∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗
(0.002) (0.0001) (0.0001)

Log mean temperature 0.001 0.032∗∗∗ 0.026∗∗∗
(0.118) (0.007) (0.006)

Constant 15.944 −0.832 0.874
(37.515) (2.243) (1.998)

Observations 283 283 283
R2 0.772 0.742 0.740
Adjusted R2 0.757 0.726 0.723
Residual Std. Error (df = 265) 8.072 0.483 0.430
F Statistic (df = 17; 265) 52.646∗∗∗ 44.874∗∗∗ 44.285∗∗∗

Source: Author
Note: Heteroskedasticity robust standard errors are in the parentheses. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01
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Table A.4: Estimating the Labor Supply Equation

Dependent variable:

ln !:= ln !D= ln !:= ln !D=
OLS OLS IV IV

(1) (2) (3) (4)

PM2.5, [−bC[C/([C + 1)] 0.002 −0.001 −0.010∗∗ −0.005
(0.002) (0.002) (0.004) (0.003)

ln ,̃ : , [[:/([: + 1)] 0.706∗∗∗ 0.779∗∗∗
(0.075) (0.141)

ln ,̃D , [[D/([D + 1)] 0.521∗∗∗ 0.537∗∗∗
(0.133) (0.138)

Provincial capital 0.242∗∗∗ −0.102 0.258∗∗∗ −0.092
(0.055) (0.063) (0.084) (0.063)

Log prefecture population, 1982 0.370∗∗∗ 0.551∗∗∗ 0.458∗∗∗ 0.580∗∗∗
(0.069) (0.100) (0.096) (0.100)

Log city centre population, 1982 −0.113∗∗∗ −0.039 −0.142∗∗∗ −0.047
(0.041) (0.036) (0.045) (0.036)

Share prefecture population, with high school, 1982 0.332∗∗ −0.044 0.339∗ −0.036
(0.158) (0.172) (0.181) (0.170)

Share prefecture population, in manufacturing, 1982 0.294 −1.091∗∗∗ −0.415 −1.265∗∗∗
(0.332) (0.386) (0.590) (0.424)

Log prefecture area 0.092∗∗ 0.004 −0.060 −0.040
(0.042) (0.042) (0.066) (0.055)

Log city centre area 0.029 0.011 0.042 0.014
(0.022) (0.021) (0.026) (0.021)

Log km to coast −0.014 −0.007 0.018 0.002
(0.013) (0.014) (0.021) (0.014)

West Region −0.134∗∗∗ 0.096∗ −0.139∗∗ 0.093∗
(0.049) (0.055) (0.062) (0.056)

East Region −0.210∗∗∗ −0.052 −0.169∗∗∗ −0.038
(0.039) (0.039) (0.047) (0.040)

Log city centre roughness 0.031 0.042 −0.010 0.031
(0.027) (0.039) (0.030) (0.038)

Log prefecture roughness 0.022 −0.013 −0.005 −0.021
(0.014) (0.018) (0.020) (0.021)

Log precipitation −0.0001∗∗∗ −0.0001 −0.0002∗∗∗ −0.0001∗
(0.00004) (0.00005) (0.0001) (0.0001)

Log mean temperature 0.006∗ 0.005 0.004 0.005
(0.003) (0.003) (0.004) (0.003)

Constant −3.062∗∗∗ −1.473∗ −2.324∗∗ −1.284
(0.863) (0.817) (0.981) (0.824)

Observations 283 283 283 283
R2 0.923 0.885 0.907 0.883
Adjusted R2 0.918 0.878 0.902 0.876
Residual Std. Error (df = 266) 0.237 0.248 0.260 0.249
F Statistic (df = 16; 266) 199.438∗∗∗ 127.470∗∗∗

Source: Author
Note: Heteroskedasticity robust standard errors are in the parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A.3: Emission of Pollutants from Production and Consumption Sources

(a) SO2 from production (kilo-tonne/km2) (b) SO2 from consumption (kilo-tonne/km2)

(c) NO2 from production (kilo-tonne/km2) (d) NO2 from consumption (kilo-tonne/km2)

(e) Primary PM2.5 from production
(kilo-tonne/km2)

(f) Primary PM2.5 from consumption
(kilo-tonne/km2)

Source: Author
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Figure A.4: Illustration of the Spatial Effect of Policy Shock from Wuhan

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage (i) Scale Effect

(j) Composition Effect (k) Manufacturing Price (%" ) (l) Services Price (%()

Source: Author
Note: The maps depict elasticities computed against a 10 percent change in the regulation parameter of Wuhan
(b6
,Dℎ0=

). The red color indicates the positive computed elasticities, while the blues indicate negative ones. The
midpoint of the colour palette is set to zero.
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Figure A.5: Illustration of the Spatial Effect of Policy Shock from Deyang

(a) Industrial Emission (b) total Emission (c) PM2.5

(d) Skilled labor (e) Unskilled labor (f) Exposure

(g) Skilled Real Wage (h) Unskilled Real Wage (i) Scale Effect

(j) Composition Effect (k) Manufacturing Price (%" ) (l) Services Price (%()

Source: Author
Note: The maps depict elasticities computed against a 10 percent change in the regulation parameter of Deyang
(b6
�4H0=6

). The red color indicates the positive computed elasticities, while the blues indicate negative ones. The
midpoint of the colour palette is set to zero.
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Abstruct (in Japanese) 

要約 

本稿では、生産・消費活動に伴い発生する大気汚染を明示的に内生化した空間均衡

モデルを構築した。本モデルには、異なるタイプの労働者（熟練労働者と未熟練労働

者）を導入し、大気汚染に対して異なる選好を持つ両者が国内を移住できると仮定し

た場合の、地域的な環境政策の効果について考察した。2010年時点での中国のデータ

に対してモデルのパラメータを較正（キャリブレーション）してシミュレーションを

行ったところ、地域的に厳格な環境規制がその地域への「向心力（centripetal force）」

として働き、労働者や生産活動を当該地域に引き付け、同時に当該地域及び国全体の

汚染排出を削減しうる場合があることが分かった。この結果は、地域的な環境規制を

「遠心力（centrifugal force）」と見る従来の考え方とは異なるもので、生産要素（労

働力）の移動などを明示的に導入したことで得られたものである。続いて、中国全体

で 10 パーセントの工業大気汚染排出を減らすために、削減責任を地域的にどのように

割り当てるべきかを考察した。その結果は、少数の豊かな地域に削減責任を集中させ

る方が、より平等に責任配分をするよりも厚生面および経済生産面で優れたパフォー

マンスを上げ得ることが分かった。 
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