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Abstract 

Given the stagnant agricultural productivity and persistent food insecurity in low-income 
countries—notably in sub-Saharan Africa (SSA)—there has been continued interest in the 
adoption of new technology and its impact on productivity in these regions. Interestingly, there 
are signs of Green Revolution in maize and rice in SSA, reflected in sharply increasing yield 
trends in advanced regions. To increase crop yields and sustain yield gains, recent case studies 
of technology adoption unanimously recommend the adoption of integrated farm management 
systems, particularly in SSA. On the other hand, since the 2010s, there have been increasing 
numbers of studies on social network or farmer-to-farmer technology extension. These studies 
explore more efficient extension systems than traditional public-sector extension approaches. 
This article reviews both recent case studies of technology adoption and its productivity 
impacts as well as studies on agricultural extension to identify common findings, shortcomings, 
and major remaining issues. 
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1. Introduction 

Given the stagnant agricultural productivity and persistent food insecurity in low-income 

countries—notably in sub-Saharan Africa (SSA)—there has been continued interest in the 

adoption of new technology and its impact on productivity. In particular, how to increase maize 

yield and sustain its yield gain are major issues for agricultural development in SSA. Such 

interests are supported by changes in favor of the adoption of new agricultural technologies, 

such as the release of improved crop varieties and the widespread use of mobile phones, which 

is expected to reduce transaction costs (Aker, 2011; Aker and Mbiti, 2010); and the buoyant 

use of microcredit and index-based weather insurance, which would help remove cash 

constraints and excessive exposure to production risks (de Janvry et al., 2017; Magruder, 2018). 

In fact, there are signs of Green Revolution in maize and rice in SSA, reflected in sharply 

increasing yield trends in the advanced regions of Africa (Otsuka and Muraoka, 2017). 

A widely observed puzzling phenomenon in SSA is the low adoption rate of seemingly 

profitable technology (Macours, 2019; Sheahan and Barrett, 2017). The first major question 

that the literature on technology adoption ought to ask is whether truly productive and 

profitable technologies are available in SSA and other low-income countries. The related 

question is what the appropriate agricultural technologies are that can bring about significant 

and sustainable improvement in productivity. 

The first purpose of this review article is to identify common findings of the studies on 

technology adoption regarding its determinants, impacts, and shortcomings. We especially 

focus on maize and lowland rice, which are considered the most promising staple crops in SSA 

(Otsuka and Larson, 2013, 2016). A major and common argument in recent studies is that, in 

addition to the use of modern inputs, integrated farm management systems could lead to 

significant and sustained gains in productivity. These systems include application of organic 
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fertilizer and intercropping or rotation with leguminous crops in the case of maize and 

application of bund construction, leveling, and straight-row transplanting in the case of rice. 

Even if profitable technologies are potentially available, they may not be diffused 

widely, partly because of credit, insurance, and other market-related constraints and partly 

because of the ineffective information dissemination system, largely arising from the absence 

of effective agricultural extension systems.1 The extension system is particularly weak in SSA 

because of the structural adjustment policies implemented in the 1980s and 1990s, which 

suppressed public-sector activities. To uncover efficient technology extension systems, the 

2010s witnessed a surge in studies on social network or farmer-to-farmer technology 

dissemination. These works were triggered by Foster and Rosenzweig (1995) and Conley and 

Udry’s (2001, 2010) pioneering studies. Whereas these studies have relied on observational 

data, the recent trend has moved toward the use of experimental data based on the randomized 

controlled trial (RCT). This technique has been applied to various fields of development 

economics to rigorously examine the causal impact of interventions such as roles of credit, 

index-based weather insurance, and contract farming. Because other review articles are 

available on other issues,2 the second purpose of this article is to review recent articles on 

technology diffusion through farmer-to-farmer extension.3 More specifically, we will examine 

the effectiveness of farmer-to-farmer extension systems, qualification of appropriate 

farmer-trainers, and incentivization of farmer-trainers. Although the available evidence is 

inadequate, we will attempt to speculate an efficient extension system that combines the 

traditional public-sector extension with the effective farmer-trainer systems. 

                                            
1 In this article, “technology adoption” refers to the adoption of new improved technologies by 
individual farmers in a certain area, whereas “technology diffusion” refers to widespread adoption of 
new technologies by a larger number of farmers in wider areas. 
2 See de Janvry et al. (2017), Magruder (2018), Otsuka et al. (2016), and Macours (2018) for related 
reviews. 
3 Feder et al. (1985) and Foster and Rosenzweig (2010) provide excellent reviews on the earlier 
literature on technology adoption. 
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Before reviewing the case studies of technology adoption in Section 3 and recent 

studies of technology diffusion in Section 4, we examine over-time changes and 

cross-sectional differences in maize and rice yields by major regions of the world in Section 2. 

This allows us to sketch the technological changes and their regional differences in 

productivity from the global viewpoint. Also examined in Section 2 is the distribution of topics 

dealt with by articles recently published in leading journals of development economics and 

agricultural economics by crop and region. 

 

2. An Overview of Recent Research Areas and Yield Trends 

2.1 Recent studies of technology adoption and diffusion 

To understand the recent trend of empirical microeconomic studies in developing countries, we 

review published articles in major field journals in both development and agricultural 

economics from 2010 to the end of July 2019.4 There are 4,752 and 2,826 original research 

articles published in development and agricultural field journals, respectively, out of which 90 

and 190 distinct articles are empirical studies on technology adoption and diffusion in 

developing countries using microdata (e.g., plot and household level data), respectively. 

Table 1 summarizes the number of published articles, classified by regions and type of 

crops, separately for development and agricultural economics journals. Because one paper in 

the development journal covers regions over two continents, the total number becomes 91 in 

the upper part of the first column in this table. Note that technology here includes not only 

cultivation practices, such as input use and management methods, but also financial products 

related to agricultural production, such as microcredit and weather index insurance. 

                                            
4 The reviewed development economics journals include Economic Development and Cultural Change, 
Journal of Development Economics, Journal of Development Studies, World Bank Economic Review, 
and World Development, whereas agricultural economics journals include Agricultural Economics, 
American Journal of Agricultural Economics, Food Policy, and Journal of Agricultural Economics. 
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It is clear that most studies pertain to Africa, including SSA, accounting for more than 

70% of all publications on this issue. South Asia follows, accounting for about 10% of the total 

publications. These two regions are places where the vast majority of the global poor reside. 

Here, food insecurity and vulnerability to various shocks are still serious concerns amidst the 

looming climate change that would have particularly significant negative impacts on regional 

crop production (Baldos and Hertel, 2014; Rosegrant et al., 2014). Thus, most published 

articles are problem oriented. 

Reflecting the fact that maize and rice are major cereals in these two regions, these two 

crops are intensively studied in the literature. Though the importance of maize in production 

and consumption in SSA has long been recognized, an increasing number of studies point out 

the potential of rice to boost food production in this region. In fact, the consumption level of 

rice has sharply increased in recent times (Otsuka and Muraoka, 2017). 

 

2.2 Changes in maize and rice yield by region 

Given the intensive interest in maize and rice research for developing countries, we would like 

to compare changes in maize and rice yields in SSA, South America, South Asia, and 

Southeast Asia from 1961 to 2017. We also show the average yield of the top five countries in 

SSA. If a yield growth of the best performing countries in SSA is comparable with that in 

South and Southeast Asia and South America, it is likely that other SSA countries located in 

similar climate conditions would have the potential to achieve high yield growth. 

Several interesting observations can be made from the comparison of the maize yield 

trends in Figure 1. First, maize yields were similar between SSA, South Asia, and Southeast 

Asia before 1980, indicating that the yield gap due to agroclimatic differences was small 

before the Green Revolution. Second, less developing countries seem to exploit their 

backwardness as an advantage. The yield of maize in South America began to increase 

gradually after around 1970; Southeast Asia followed the growth of South America from the 
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1980s; South Asia followed Southeast Asia from around 1990. Thus, the Green Revolution 

created the yield gap across continents, but latecomers did catch up with advanced countries 

over time. Third, the yield stagnated in SSA in contrast to other regions, but it slowly began to 

increase around 1990, which may suggest that the Green Revolution had begun in this region. 

Fourth, the group of the top five countries in SSA, namely, South Africa, Ethiopia, Zambia, 

Kenya, and Uganda, has almost the same growth trend of yield as South Asia. This indicates a 

possible Green Revolution in maize in the well-performing areas of SSA. Therefore, there is a 

possibility to transfer high-yielding maize farming practices from these high-performing 

regions to other stagnant regions in SSA. Through a literature review in the section, we will 

examine what promising maize technologies can help realize a technology transfer. 

Figure 2 displays the difference in rice yield growth among regions. Similar to maize 

yield trends, the yields of SSA, South Asia, Southeast Asia, and South America stagnated in 

the 1960s and 1970s. The rice yield in Southeast Asia began to grow from around 1970, 

whereas the yield in South Asia and South America rapidly grew around 1980. Although the 

yield in SSA had been stagnant from the 1960s to the mid-2000s, gradual growth has been 

observed since the mid-2000s. Furthermore, the yield of the top five countries in SSA, namely, 

Kenya, Mauritania, Niger, Brundi, and Madagascar, especially saw a sharp increase after 

around 2000, implying that a Green Revolution in rice must have occurred therein. Like the 

case of maize, we would like to explore the transferability of rice farming technologies from 

advanced regions to stagnated areas in SSA in the next section. 

 

3. Case Studies of Technology Adoption 

Because the adoption of modern agricultural technologies (improved varieties and inorganic 

fertilizer) and integrated farm management system is considered essential components of 
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productivity growth in the literature, we review determinants of such adoptions and their 

impact in order to understand sustainable farming technologies in developing countries. 

 

3.1 Adoption of improved varieties 

The effort of research and development of new improved varieties suitable for local 

agroclimatic environments and their diffusion are considered the most important means to 

boost crop yield and improve the well-being of farmers in developing countries (Evenson and 

Gollin, 2003). We observe striking heterogeneity among developing countries upon examining 

the adoption rate of improved crop varieties. For example, using the Living Standards 

Measurement Study–Integrated Surveys on Agriculture (LSMS-ISA) dataset, Sheahan and 

Barrett (2017) show the percentages of land under improved maize varieties by countries in 

SSA around 2010–12 as follows: 28% in Ethiopia, 43% in Malawi, 95% in Nigeria, 35% in 

Tanzania, and 54% in Uganda. Table 2 also indicates large variation in the percentage of area 

under improved maize varieties across countries in SSA, ranging from 32% in Ethiopia in 

2010–11 (Zeng et al. 2015, 2017) to 83% in Kenya in 2009–10 (Smale and Olwande, 2014). 

As presented in Table 2, adoption of improved varieties generally has positive effects 

on yield and farmers’ welfare. Specifically, the adoption of improved maize, legume, and other 

cereal varieties significantly increases yield (Villano et al., 2015; Zeng et al., 2015), crop and 

household income (Bezu et al., 2014; Kassie et al., 2011; Khonje et al., 2015; Manda et al., 

2019; Mathenge et al., 2014; Smale and Mason, 2014; Verkaat et al., 2017; Villano et al., 2015), 

consumption (Asfaw et al., 2012ab; Bercerril and Abdulai, 2010; Bezu et al., 2014), nonland 

asset or wealth (Bezu et al., 2014; Smale and Mason, 2014; Manda et al., 2019; Mathenge et al., 

2014), and child nutrition (Zeng et al., 2017). It particularly reduces poverty (Asfaw et al., 

2012a; Becerril and Abdulai, 2010; Kassie et al., 2011; Khonje et al., 2015; Manda et al., 2019; 

Mathenge et al., 2014; Smale and Mason, 2014; Verkaat et al., 2017; Zeng et al., 2015). 
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Nevertheless, a large number of farmers does not adopt these seemingly promising and 

welfare-enhancing technologies. Studies note that poor access to information through 

extension services and inadequate seed supply constrain the adoption of improved crop 

varieties (Asfaw et al., 2012ab; Kassie et al., 2011; Khonje et al., 2015; Shiferaw et al., 2015; 

Suri, 2011; Villano et al., 2015). Shiferaw et al. (2015) demonstrates from their study of 

improved groundnut adoption in Uganda that, out of 41% of non-adopters, only 10% of 

farmers do not want to adopt, whereas 31% of farmers who do, face constraints that impede 

them from adoption. He empirically shows that slow uptake of improved groundnut can be 

attributed to lack of technological information, seed supply, and credits. 

An explanation of non-adoption provided by Suri (2011) was based on the 

heterogeneous returns to the use of modern inputs among farmers. In a study on Kenya, she 

finds that farmers with high net returns adopted hybrid seeds, whereas farmers with low net 

returns did not. She suggests that removing supply and infrastructure constraints such as long 

travel time to seed and fertilizer distributors for farmers would be a cost-effective policy to 

raise hybrid seed adoption rates and maize yields. Michiler et al. (2018) extend Suri’s analysis 

to improved chickpea production in Ethiopia and find that the adoption of improved chickpeas 

does not contribute to yield gain. However, it does decrease production costs, thereby leading 

to higher profitability than local varieties. They argue that this high profitability explains the 

rapid increase in adoption of improved chickpea seeds in Ethiopia. Additionally, Kijima et al. 

(2011) show that low profitability under the variable rainfall environment of NERICA rice in 

Uganda leads to the massive dropout. These studies commonly indicate the importance of 

analyzing profitability of improved varieties to understand the low adoption rate. 

Lunduka et al. (2012) point out that the observed plateaus of adoption of modern 

maize varieties could be due to different traits of modern and traditional maize seeds and 

farmers’ preference. They empirically show that, though farmers value high yield and early 

maturity of modern varieties, they also value the storability, taste, and processing traits of local 
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varieties. This calls for seed breeding research to focus not only on crop yield, but also on ease 

of storage, high poundability, high flour–grain ratio, and favorable taste reflecting farmers’ 

demand (Lunduka et al., 2012). 

Bold et al. (2017) find that more than 50% of hybrid maize seeds are not authentic 

seeds and 30% of nutrients are missing in inorganic fertilizer in their survey areas in Uganda. 

This results in low return from hybrid seeds and inorganic fertilizer adoption, leading to low 

take-up of these modern inputs. Thus, we may need to develop inspection systems that assure 

quality of the modern inputs available to rural smallholders. 

The recent development of improved storage technology could increase adoption of 

improved varieties. The kernels of hybrid maize varieties are softer and less protected from 

insect attacks than traditional varieties (Smale et al., 1995). A study using Malawi’s data 

collected by Ricker-Gilbert and Jones (2015) shows that acquiring chemical storage protectants 

after the previous harvest increases adoption of improved maize varieties. Additionally, in 

Omotilewa et al.’s (2018) RCT in Uganda, the authors distributed improved hermetic storage 

bags for eliminating insect pests in storage to randomly selected households. They find that 

households that receive the improved bag more likely plant hybrid maize than control 

households by 10 percentage points. These studies show that newly developed technology, 

which could overcome the drawback of improved varieties, could improve adoption of 

improved seeds. 

Generally, improved varieties are developed to enhance crop yields. In addition to the 

yield-enhancing trait, the development of abiotic stress-tolerant varieties, which could mitigate 

weather shocks affecting crop yield, has become especially important, possibly due to rapid 

climate change. In fact, Kostandini et al. (2013) estimate that adoption of drought-tolerant 

maize could generate gains of US$ 362–590 million and a 0.01–4.29% reduction in poverty by 

2016. Emerick et al. (2016) conduct an RCT to distribute a flood-tolerant rice variety randomly 

in India. They find that the use of this risk-reducing variety leads to higher adoption of other 
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improved agricultural inputs and practices, such as adoption of a more labor-intensive planting, 

inorganic fertilizer application, and credit utilization. One issue of abiotic stress-tolerant 

varieties is that the benefits of adoption become visible only when the specific stress, which 

they are tolerant to, appears (Yamano et al., 2018; Yorobe et al., 2016). The study of 

submergence-tolerant rice variety adoption in Bangladesh shows that experience of 

submergence in the previous year increases adoption (Yamano et al., 2018). Additionally, the 

study of drought-tolerant maize adoption in Malawi demonstrates that previous early season 

dry spells and access to seed subsidy increases adoption (Katengeza et al., 2019). Thus, if 

normal seasons continued, we could predict that farmers tend to switch to other varieties. 

Therefore, Yamano et al. (2018) stress the importance of education for farmers about the 

benefits of stress-tolerant crop varieties through extension activities. 

One concern about empirical studies of adoption of improved varieties is accuracy of 

adoption status reported by farmers. Most studies use farmers’ self-reported data and assume 

that farmers correctly know the verities that they planted. However, the self-reported data of 

varieties status could be misclassified, which may lead to biased estimates (Wossen et al., 

2019b). In fact, farmer may not know the accurate status of seeds that they planted possibly 

due to seed recycling, imperfect input markets, and lack of technical information on the 

improved seeds (Kosmowski et al., 2016; Maredia et al., 2016; Wossen et al., 2019b). To tackle 

this issue, new technology was developed to identify the types of crop varieties, which is 

DNA-fingerprinting of seeds (Floro et al., 2018; Kosmowski et al., 2016; Maredia et al., 2016). 

Wossen et al. (2019b) report that 25% of farmers report improved cassava varieties as 

traditional ones and 10% of them report traditional cassava as improved one in Nigeria. This 

misreporting occurs systematically, causing biased estimates of 22 percentage points in 

productivity impact of adoption. They also find that the adoption of improved cassava reduce 

poverty by 4.6 percentage points and this is sensitive to the measurement of adoption status 

(Wossen et al., 2019a). Floro et al. (2018) also demonstrate that Colombian farmers 
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substantially overestimate their use of improved cassava varieties, which leads to significant 

differences in the determinants estimation between studies based on farmer self-identification 

and DNA fingerprinting. It appears that the lack of credible extension system leads to 

confusion about improved varieties among farmers. This is especially true if there are many 

available varieties in local markets. Indeed, based on finding that 89% of farmers’ 

classification of lentil varieties are accurate in Bangladesh, Yigezu et al. (2019) argue that the 

necessity of DNA fingerprinting may be low when there are only a few varieties and most 

farmers obtain varieties through formal systems. 

 

3.2 Use of inorganic fertilizer 

Adoption of improved varieties alone is not sufficient to boost crop yield. Application of 

inorganic fertilizer is necessary to exploit the full yield potential of improved varieties. In fact, 

simultaneous adoption of improved varieties and inorganic fertilizer is the core technology of 

Green Revolution in Asia and Latin America (Hayami and Ruttan, 1985). Therefore, inorganic 

fertilizer use, in addition to improved seed adoption, has been widely promoted to realize 

considerable yield growth, especially in SSA. 

When we look at the inorganic fertilizer use by region, it is striking that inorganic 

fertilizer application is much lower in SSA compared with other regions. For example, nitrogen 

application in SSA is only 5–6% of that in South Asia and Southeast Asia (FAOSTAT, 2019). 

From 1980 to 2000, the annual growth rate of inorganic fertilizer application in SSA was only 

0.93%, whereas that of South Asia was nearly 5% (Morris et al., 2007). There is, however, 

heterogeneity in the use of inorganic fertilizer among countries and even within countries in 

SSA. Sheahan and Barret (2017) demonstrate that the adoption rates of inorganic fertilizer in 

six countries range from 3.2% in Uganda to 64.3% in Nigeria; the mean nutrient usages range 

from 0.7 kg per hectare in Uganda to 64.3 kg per hectare in Nigeria. Heterogeneity of the yield 

response rate to inorganic fertilizer use and value-cost ratios is also surprisingly large, 
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presumably due to heterogeneity in soil, rainfall, and market conditions in various countries 

(Jayne and Rashid, 2013). 

How can we increase inorganic fertilizer application to boost crop yield, assuming that 

its use is potentially profitable? Empirical studies indicate several constraints affecting 

inorganic fertilizer use. Capital and credit constraints impede farmers from continued adoption 

of inorganic fertilizers in DR Congo (Lambrecht et al. 2014), Ethiopia (Croppenstedt et al., 

2003), and Malawi (Holden and Lunduka, 2013). Accessibility to inorganic fertilizer is another 

constraint. Minten et al. (2013) show that transaction and transportation costs together add at 

least 20% costs to actual inorganic fertilizer price that farmers pay in the most convenient 

location and 50% in the most remote location. Additionally, farmers who live in the most 

remote areas face not only higher input prices, but also lower output prices, resulting in 75% 

less inorganic fertilizer use and improved seeds compared with farmers in the most convenient 

location (Minten et al., 2013) 

The other well-known constraint of inorganic fertilizer use is risk that farmer faces. 

Based on data from India, Dercon and Christiansen (2011) demonstrate that inorganic fertilizer 

application decreases when farmer faces downside risk in consumption. Similarly, previous 

year’s rainfall level is positively associated with the intensity of fertilizer use in the current 

year in Ethiopia (Alem et al., 2010). Alem et al. (2010) also show that rainfall variability 

negatively affects inorganic fertilizer application decision, indicating that risks and uncertainly 

constraint inorganic fertilizer use. These studies suggest that measures such as the adoption of 

abiotic stress-tolerant varieties and introduction of effective insurance program to remove 

downside risks could improve the adoption of yield-enhancing technologies (Alem et al., 2010; 

Dercon and Christiansen, 2011), which is empirically validated by Cai et al., (2015), Cole et al. 

(2017), and Karlan et al. (2014). 

Farmers’ motivation and procrastination may also matter. Duflo et al. (2011) find that 

willingness to purchase inorganic fertilizer is high at the time of harvest among farmers in 
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Kenya, but they may procrastinate purchasing inorganic fertilizer and fail to save enough 

money for the next crop cycle. The authors experimentally show that small nudges, like 

providing vouchers to purchase inorganic fertilizer immediately after harvest, help 

present-biased farmers overcome procrastination problems and commit to fertilizer use. On the 

other hand, Holden and Lunduka (2013) find that some farmers in Malawi are willing to sell 

maize at the planting time when its price is higher, and then purchase inorganic fertilizer. 

However, it may not be an appropriate strategy to increase inorganic fertilizer 

application alone without consideration of its profitability. The estimated yield response rate to 

inorganic fertilizer application in the trial plots managed by agronomic researchers in SSA 

ranges from 18 to 40 kg of maize per kilogram nitrogen applied (Vanlauwe et al., 2011) At the 

prevailing market prices, these response rates to inorganic fertilizer use could result in high 

profitability of fertilizer application (Jayne et al., 2018). However, table 3 shows that the 

average output computed from farmers’ fields ranges from 7.6 kg to 25 kg of maize per 

kilogram of nitrogen (Burke et al. 2017, 2019; Liverpool-Tasie, 2017; Liverpool-Tasie et al., 

2017; Sheahan et al., 2013; Matsumoto and Yamano, 2013). These empirical analyses reveal 

that the low response rate to nitrogen application results in low profitability of inorganic 

fertilizer use. In fact, a significant portion of farmers in Kenya, Nigeria, and Zambia apply 

inorganic fertilizer at the economically optimum level, given the response rate to inorganic 

fertilizer use and prevailing prices (Burke et al., 2017, 2019; Liverpool-Tasie, 2017; 

Liverpool-Tasie et al., 2017; Matsumoto and Yamano, 2013; Sheahan et al., 2013). These 

studies emphasize that, to increase profitability of inorganic fertilizer use, it is important to 

improve the response rate of inorganic fertilizer application. This finding seems to imply that 

improvement of soil health is the key to achieving these objectives. 

Marenya and Barrett (2009) empirically show the complementarities between soil 

organic matter (SOM) and applied nitrogen. Using data from western Kenya, they demonstrate 

that maize yield response to nitrogen application is low when SOM is low and increases 
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rapidly with improvement of SOM. In their samples, one-third of the plots, which were mainly 

cultivated by the poorest farmers, suffered from degraded soil. This limits the crops’ response 

rate and profitability of inorganic fertilizer application at the prevailing market prices. Soil 

degradation is a great challenge especially for SSA because increasing population pressure on 

the land leads to a reduction in fallows and more continuous farming without fertilizer 

application, which, in turn, depletes soil nutrients (Drechsel et al., 2001; Tittonell and Giller, 

2012). Therefore, a means to replenish soil nutrients and improve soil health should be 

developed and diffused for farmers in order to maintain soil fertility, thereby achieving high 

yield response rates and profitability of inorganic fertilizer application. 

Though there has been a revival of large scale input subsidy programs (ISPs) for 

boosting inorganic fertilizer application and crop yield since the early 2000s, there exists 

strong empirical criticism of ISPs. Because private sectors tend to be crowded out (Mason and 

Jayne, 2013; Ricker-Gilbert et al., 2011; Xu et al., 2009), targeting generally does not work 

well (Kilic et al., 2015; Mason et al., 2013; Pan and Christiaensen, 2012; Ricker-Gilbert et al., 

2011). Hence, the impact is small compared with the large fiscal burden (Jayne et al., 2013; 

Jayne et al., 2018). This large fiscal burden undermines the investment in agricultural research 

and extension services (Jayne and Rashid, 2013; Jayne et al., 2018). Today, it is imperative to 

build knowledges of farm management practices that could enhance soil health and sustainable 

yield growth suitable for local conditions (Burke et al., 2017, 2019). 

 

3.3 Integrated farm management system 

As we discussed in the previous section, soil erosion and nutrients depletion are becoming 

serious issues, especially in SSA, due to lack of appropriate soil management practices and 

water conservation. For example, soil nutrients, measured in terms of nitrogen, phosphorus, 

and potassium (NPK), had been lost at a rate of more than 30 kg/ha per year from 2002 to 2004 

in 85% of the African farmland (185 million ha) (Henao and Baanante, 2006). Therefore, it is 
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essential to develop farm management practices that can enhance soil fertility and prevent soil 

erosion and land degradation. Such practices could sustainably improve crop yield and 

profitability of farming. In this subsection, we would like to introduce the promising farm 

management practices for maize and rice, the two most important crops in developing 

countries. 

 

3.3.1 Maize-based integrated farming system 

In the recent literature, integrated soil fertility management (ISFM) is considered an important 

means to achieve sustainable crop yield and profitability through enhancing soil health 

(Holden, 2018; Jayne et al., 2018; Jayne et al., 2019; Larson et al., 2016; Otsuka and Muraoka, 

2017). It aims to maintain and rehabilitate soil quality, without scarifying crop yield, by 

application of animal manure, compost, and crop residues; adoption of natural or improved 

fallow and intercropping or rotation with legumes, biomass transfer, and reduced disturbance; 

and use of inorganic fertilizer and improved seeds (Marenya and Barrett, 2007; Place et al., 

2003; Vanlauwe, 2010). Fundamental to ISFM is it recognizes that a single adoption of these 

practices cannot meet the requirements of adequate soil fertility management and sustainable 

yield growth (Marenya and Barrett, 2007; Place et al., 2003). In fact, Lal (2011) estimates that 

adoption of multiple soil management practices for soil organic carbon restoration—which 

includes applying manure and compost, biological nitrogen fixation, and proper use of 

inorganic fertilizer—could increase maize yield in Africa by 0.8–1.3 million tons per year. 

A typical way to implement ISFM is to simultaneously apply inorganic and organic 

fertilizers. It is well known that these two types of fertilizers have complementary effects 

because SOM supplemented by organic fertilizer makes external nutrients more absorbable to 

crops (Bationo and Mokwunye, 1991; Marenya and Barrett, 2009; Vanlauwe and Giller, 2006). 

Empirical analysis based on household panel data in India shows that application of organic 
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fertilizer raises the marginal product of inorganic fertilizer, especially when soil fertility is low 

(Kajisa and Palanichamy, 2011). 

Intercropping or rotation with legumes is another common practice under ISFM 

because the legumes fix nitrogen from the atmosphere and make it available in the soil. It 

could also enhance crop yield sustainably by reducing plant disease, weeds such as striga, and 

insects, and by increasing the soil carbon content (Hutchinson et al., 2007; Manda et al., 2016). 

In fact, empirical analysis using data from Tanzania indicates that maize–pigeon pea adoption 

significantly increases income and consumption among sample households (Amare et al., 

2012).  

Although sometimes conservation tillage is included as a component of ISFM, its 

effect on crop yield is controversial. It entails minimum soil disturbance and is often combined 

with retaining crop residue to enhance soil aeration and fertility, carbon sequestration, and 

water-holding capacity (Hobbs et al., 2008). However, reduction in crop yields under 

conservation tillage is commonly observed, especially when no mulch is applied (Vanlauwe et 

al., 2015). Rusinamhodzi et al. (2011) find that conservation tillage could bring a positive 

effect when it is combined with mulch in low rainfall environments on light-textured soil.5 

Conservation agriculture (CA) or climate smart agricultures are another related 

practice for sustainable agricultural intensification. These sets of techniques aim tosustainably 

improve food security and farm profitability by reversing trends in land degradation and 

mitigating the impact of rapid climate change. (Farris et al., 2017). They have three key 

principles: minimum or zero tillage, permanent soil cover, and diversified crop rotation (Farris 

et al., 2017; Giller et al., 2009). However, Vanlauwe et al. (2014) argue that the fourth principle 

                                            
5 There are strands of farming practices similar to ISFM, that is, sustainable agricultural practices 
(SAPs) and sustainable intensification practices (SIPs). Both aim to improve the underlying biophysical 
functioning of the farming system and enable crop production to withstand variation in moisture, 
temperature, and biotic conditions (Kassie et al., 2015). SAPs and SIPs generally include practices 
adopted in ISFM (De Souza et al., 1993; Lee, 2005; Pretty et al., 2011; Wollni et al., 2010). Therefore, 
we categorize SAPs and SIP in the same group as ISFM. 
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should be required in CA in SSA, which is use of inorganic fertilizer to enhance organic 

residue availability and crop yield. 

Though considerable efforts have been made by national and international 

organizations to encourage farmers to disseminate ISFM, its adoption rate is still low (Kassie 

et al., 2009; Somoda et al., 2002; Tenge et al., 2004, Wollni et al., 2010). Empirical studies 

reveal that asset, labor availability, social capital and networks, access to extension services, 

market and credits, soil conditions, rainfall, tenure security, education, and experience affect 

the adoption of ISFM (Kassie et al. 2013; Kassie et al. 2015; Manda et al., 2016; Teklewold et 

al. 2013; Zeweld et al. 2019). Adoption of ISFM requires up-front investments of substantial 

labor; it also takes several years to realize its benefits (Jayne et al., 2019). For example, 

Schmidt et al. (2017) show that soil-water management investment must be maintained for at 

least seven years to achieve significant increases in value of production. Therefore, 

resource-rich farmers are more willing to make such investments than resource-poor farmers 

who tend to prioritize their immediate needs for sustenance (Jayne et al., 2019). Asfaw et al. 

(2016) argue that adoption of crop residues and organic fertilizer can be characterized by low 

capital investments, high labor inputs, and long time to achieve results, whereas that of 

inorganic fertilizer and improved seeds requires higher capital investments, low labor inputs, 

and short times for results. Thus, the difference in resource endowments and needs of farmers 

is likely to result in different patterns of adoption of ISFM technologies. Aside from the 

location specificity, ISFM includes demonstrably knowledge- and management-intensive 

practices. Therefore, farmers’ education and training through extension services is necessary 

for diffusion of ISFM.  

What are then the effects of ISFM adoption? Kassie et al. (2018) report that adoption 

of improved maize seed, inorganic fertilizer and legume intercropping increases maize yield 

significantly in Ethiopia. They report that these improved maize production technologies 

reduce maize production costs because legume intercropping reduces fertilizer costs, leading 
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higher net crop income. Similarly, Teklewold et al. (2013) find that, in Ethiopia, adoption of 

maize–legume rotation, improved maize varieties, and conservation tillage increases maize 

income, particularly when these practices are adopted in combination. Additionally, based on 

data from Niger, Asfaw et al. (2016) show that adoption of inorganic fertilizer, improved seeds, 

and organic fertilizer is positively associated with crop productivity and income, but not crop 

residue. In the case of Zambia, Arslan et al. (2015) demonstrate that legume intercropping 

increases maize yields and reduces probability of low yield even under critical weather stress. 

They also find that reduced tillage and crop rotation have no significant effect on maize yield. 

These findings suggest that adoption of certain combination of ISFM brings positive effect on 

maize yields, but some components of ISFM do not work well. This is not surprising, given the 

heterogeneity in soil, agroclimate, and market conditions in various places. Therefore, it is 

necessary to develop localized ISFM technologies adjusted for specific agro-ecological and 

socioeconomic conditions.  

Available evidence is generally limited to the impact of ISFM on yield or, at best, on 

income. There are very few studies analyzing of profitability of ISFM, which deducts not only 

the paid-out cost, but also the imputed cost of family-owned resources, such as labor and 

machine, from the gross output value. This is problematic because complex 

knowledge-intensive technologies, like ISFM that require care and judgment, are mainly 

performed by family labor. Though it is challenging to estimate profit because of the difficulty 

in imputing the cost of family labor, more research efforts need to be devoted to assessing the 

profitability of new package of technologies. Otherwise, we cannot judge the viability and 

scalability of new technology. 

 

3.3.2 Improved rice cultivation practices 

New labor-intensive management practices, such as system of rice intensification (SRI), have 

been proposed for lowland rice cultivation to improve the efficiency of natural resource use 
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and prevent environmental degradation (Uphoff and Randriamiharisoa, 2002). SRI consists of 

four core components: early transplanting of seedlings, shallow planting of one or two 

seedlings per hill, sparse planting, and intermittent irrigation. However, scholars question the 

yield and profitability impacts of SRI (Glover, 2011; Sheehy et al., 2005). Though Noltze et al. 

(2013) demonstrate that SRI in Timor Leste significantly increases crop yield and income, 

Takahashi and Barrett (2014) present contradicting evidence: SRI increased yield by about 

64% on average, but did not increase household income because it required a shift of labor 

from other activities. 

Recently, a new rice farming system has been introduced in some areas; this includes 

not only farm management practices, but also modern input use. According to Nakano et al. 

(2018a), a new rice farming system, which consists of practices such as seed selection in salty 

water, straight-raw dibbling or transplanting, wide spacing, application of inorganic fertilizer, 

and adoption of improved rice varieties, has been introduced to rural Tanzania. They call this 

system “modified SRI (MSRI)”. They examine the impact of MSRI training in rural Tanzania 

and found that the rice yield of MSRI plots is higher by 1.3–1.8 tons per ha, with profits 

increasing by US$ 119–137 per ha compared with other plots. 

Improved rice cultivation practices (IRCPs), which are similar to MSRI, have also 

been introduced in some areas in SSA. IRCPs include not only the application of modern 

inputs, such as improved lowland rice varieties and inorganic fertilizer, but also improved 

management practices, such as leveling, bund construction, as well as straight-row 

transplanting for soil, water, and weed management (Kijima et al., 2012; Takahashi et al., 

2019). The major advantage of lowland rice is the high transferability of recommended 

practices developed and diffused widely in Asia to SSA (Otsuka and Lawson, 2013). The 

difference between IRCPs and MSRI lies in their management practice components. Like 

ISFM for maize, IRCPs are knowledge-intensive technologies based on the idea that, beyond 

adoption of modern inputs, even appropriate soil and water management practices are essential 



 

20 
 

to boost lowland rice yields significantly and sustainably. The IRCP training was provided for 

rural farmers in some countries in SSA, followed by impact evaluation of the training by 

researchers (Kijima, 2019). Studies have found that this training encourages adoption of IRCPs 

(Kijima et al., 2012; Takahashi et al. 2019), significantly increases rice yield (deGraft-Johnson 

et al., 2014; Nakano et al. 2018b), income (Takahashi et al., 2019), and profit (deGraft-Johnson 

et al. 2014; Kijima et al. 2012), with positive spillover effects on non-trained farmers over time 

(Nakano et al. 2018b; Kijima, 2018; Takahashi et al. 2019). Although empirical findings 

indicate that they have the potential to boost rice yield and profits in SSA, IRCPs are not 

prevalent in rice farming in this region presumably because of weak extension systems (Otsuka 

and Larson, 2013, 2016).  

 

4. Technology Diffusion among Farmers 

The existing case studies clearly suggest that improved agricultural technologies, such as 

modern varieties, inorganic fertilizers, and a variety of improved agronomic practices, are 

available. However, their adoption rates are not generally high, especially in SSA. 

An increasing number of recent studies focus on failures that impede appropriate 

information flow from laboratories or experimental stations to farmers. Public extension 

workers have traditionally played a central role in the overall process of technology diffusion. 

However, it may be prohibitively costly to directly train all individual farmers to increase their 

awareness and knowledge of new technologies, and thus promote technology adoption and 

wider diffusion. This is especially true in many low-income countries where the dominant 

mode of agricultural production is small-scale farms that are located in geographically 

dispersed areas. In these regions, the quality of infrastructure is often low, which further 

increases the cost of disseminating information to them (Anderson and Feder, 2007). Also, 

extension workers sometimes feel unmotivated; as a result, information loss from extension 
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agents to farmers becomes severe (Niu and Ragasa, 2018). To complement the extension 

system from public agents to farmers, the potential of the farmer-to-farmer extension (F2FE) 

approach has been extensively investigated in recent years. 

This section presents an overview of the literature on F2FE, focusing on the extent to 

which and under what conditions its approach is effective, how to best select farmer-trainers 

who play a major role in disseminating technological information, and whether monetary or 

other incentives are required to motivate farmer-trainers. 

 

4.1 Effectiveness of farmer-to-farmer extension systems 

Because learning new technologies is a complex process, farmers may need to rely on multiple 

sources of information before they adopt a new technology (Beaman et al., 2018; Fisher et al., 

2018; Genius et al., 2014). The importance of public extension services may be paramount at 

the initial stage of new technology diffusion—that is, when farmers have limited opportunities 

to learn from each other (Anderson and Feder, 2007). Over time, when an increasing number 

of farmers become aware of and start to adopt a specific technology, the impact of such an 

extension may diminish and the role of an F2FE system expands (Krishnan and Patnam, 2014). 

The effectiveness of an F2FE system or social learning for the diffusion of agricultural 

technologies has been widely recognized since the pioneering works by Conley and Udry 

(2001, 2010) and Foster and Rosenzweig (1995), even though it sometimes fails to achieve the 

stated objectives (Kondylis et al., 2017). Theories of social learning suggest that, when 

technologies are new, there is higher uncertainty about their expected returns and risks as well 

as the best practices (e.g., appropriate input levels). Farmers can update their beliefs by not 

only testing it themselves, but also observing peers’ behavior or sharing knowledge with them. 

This learning process is effective especially when the information is reliable and there is no 

heterogeneity in farming conditions and technological parameters (Munshi, 2004; Tjernstrom, 

2017). In such cases, information about early adopters provides appropriate signals; it 
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increases knowledge about technologies and expected profits, thereby boosting subsequent 

adoption by others (Bardhan and Udry, 1999). 

Empirically measuring the impact of social learning involves several challenges 

because of the difficulty in exactly defining the networks (Maertens and Barrett, 2012) and 

because of confounders that make geographically and socially proximate people behave 

similarly, aside from pure learning effects (Manski, 1993). With the availability of accurate 

network data and the spread of an experimental approach that creates exogenous variation in 

exposure to technology adoption, an increasing number of studies successfully identify the 

type of network and extension method most effective in disseminating agricultural 

technologies. 

Some studies find various types of social networks, such as membership in social 

groups and informal forms of mutual insurance, to be effective in exchanging information 

among members (Mekonnen et al., 2018). However, many other studies commonly illustrate 

that the learning effect is larger among members who are linked by kinships or voluntarily 

formed groups for exchanging agricultural information (Bandiera and Rasul, 2006; Conley and 

Udry, 2010; Liverpool-Tasie and Winter-Nelson, 2012; Matsumoto, 2014; Matuschke and 

Qaim, 2009; Pratiwi and Suzuki, 2017). These studies suggest that farmers do not rely on all 

members of the village for gathering agricultural information. Therefore, the use of the average 

community-level adoption rate as a proxy for an opportunity to learn would be misleading. In 

particular, having a benefiting adopter in a network is proven to be important in increasing 

adoption through productivity spillovers, especially for new and knowledge-intensive 

technologies (Conley and Udry, 2010; Magnan et al., 2015; Van den Broeck and Dercon, 2011; 

Yamano et al., 2018). This finding is important in view of the argument that new desirable 

technologies in SSA, such as integrated farm management systems, are likely to be 

knowledge-intensive, and hence complex. Van den Broeck and Dercon (2011) find that 

positive productivity spillovers among farmers may arise among kinship groups, but not 
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geographical neighbors or informal insurance network members, presumably because kinship 

among farmers ensures a conscious effort to explain complex technology compared with 

members in other network types. 

To improve female learning, the existing studies underscore the importance of 

information linkages formed among female peers. For example, Vasilaky and Leonard (2018) 

conduct a field experiment in Uganda to create a new information link by randomly pairing 

female cotton farmers at a training session with whom they had not previously interacted. The 

authors encouraged them to share technological information in the production process. This 

intervention resulted in a significant increase in the productivity of the treated pair, signifying 

the importance of linking females who tend to be outside the agricultural information network. 

Similarly, having a female instructor reduces gender bias, creates awareness, and helps in the 

adoption of new technologies by female (Kondylis et al., 2016; Shikuku, 2019), and such 

network effects are larger among female than male farmers (Mekonnen et al., 2018). 

The significant gendered segmented network is observed partly because of cultural 

norms that prohibit women from interacting with men external to their family members 

(Kondylis et al., 2016). However, it may be also because individuals have a tendency to 

disproportionately learn from those who are similar to them. This is called homophily, which 

contrasts with heterophily, wherein knowledge diffusion takes places more often among people 

who are different from each other (Feder and Savastano, 2006; Shikuku et al., 2019). The 

relative importance of homophily and heterophily becomes an important issue not only to 

improve female productivity, but also to facilitate overall social learning. 

The relevance of this argument is clear if we realize that, due to budgetary constraints, 

public extension agents can often train only a limited number of farmer-trainers or “contact 

farmers” who are later expected to share the information with other non-trained community 

members. This contact farmer approach is now widely used in many developing countries, 

including SSA. However, it is not entirely clear who should become the farmer-trainers. 
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Specifically, the following question is left unanswered: Should those individuals be 

farmer-trainers who are influential in terms of network connectivity and opinion leadership, 

who are innovative with entrepreneurship ability, or who are ordinal and representative of the 

majority population in the community? 

 

4.2 Qualifications of appropriate farmer-trainers 

The literature considers three types of potential farmer-trainers: (1) those who are at the center 

of the information network; (2) those who are innovative, eager to take risks associated with 

the adoption of new technologies, and often knowledgeable and productive; and (3) those who 

have socioeconomic and farm characteristics similar to the majority of farmers in a community. 

Whereas (1) and (2) are conceptually distinguishable, they often overlap and tend to have 

higher status in a society (hereafter called “lead farmer”) (Dar et al., 2019; Feder and 

Savastano, 2006; Rogers, 1995). 

The advantage of selecting types (1) and (2) is that the number of trainee farmers 

would increase because lead farmers have various connections with others, information would 

be more accurately disseminated because they are more knowledgeable, and demonstration 

effects in terms of productivity and profitability improvement would be larger because they are 

more productive. Moreover, such innovators would effectively integrate new knowledge into 

local practices when adaptation is required in the local context. By strategically delaying own 

adoption, peer farmers can free-ride and reduce the uncertainty associated with the adoption of 

new technologies (Bandiera and Rasul, 2006; Foster and Rosenzweig, 1995; Maertens, 2017). 

On the other hand, if gains of new technology are heterogeneous, reflecting the variety 

in growing conditions and farmer characteristics, there is no guarantee that lead farmers’ 

success can be replicated by other farmers (Magnan et al., 2015; Shikuku, 2019; Suri, 2011; 

Tjernstrom, 2017). In other words, better performance cannot be solely attributed to the 

advantages embedded in technology, but to observable and unobservable characteristics of lead 
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farmers and their agricultural plots (Barrett et al., 2004). In this case, it would be easier for 

followers to learn from farmer-trainers who are endowed with similar, but not outstanding, 

characteristics. 

The empirical findings of these competing views are mixed. Maertens (2017) provides 

evidence indicating that lead farmers play a more significant role than ordinary farmers when 

peer farmers learn about technological characteristics from their learning links. Similarly, the 

lead-farmer approach, implemented in SSA countries, has a positive impact on the uptake of 

new technologies among fellow farmers (Wellard et al., 2013). Dillon et al. (2018) compare the 

degree of technological diffusion by selecting farmer-trainers (1) randomly, (2) on network 

size, and (3) based on network centrality measured by Eigenvector centrality. The results 

suggest that the network-based targeting approach is more effective in encouraging broader 

adoption. Beaman et al. (2018) also find results similar to Dillon et al.’s (2018) findings, 

whereas Beaman and Dillon (2018) and Lee et al. (2019) show that the network-based 

targeting approach is not necessarily superior to random selection of entry points to improve 

the knowledge of other farmers. 

The superiority of homophily is presented in an analysis by Matuschke and Qaim 

(2009) and Weimann (1994). They contend that vertical flow of information from the lead 

farmer to peer farmers often fails, and successful information exchange is likely to be based on 

horizontal, socially proximate relationships. Based on an RCT in Malawi, BenYishay and 

Mobarak (2019) demonstrate that ordinary farmers perform better than lead farmers as 

farmer-trainers in terms of efforts and resultant technology diffusion, especially when ordinary 

farmers are incentivized. Takahashi et al.’s (2019) RCT in Cote d’Ivoire also shows that 

randomly selected training participants, who are representative of the majority in a community, 

effectively work as a catalyst to disseminate information to non-training participants. This 

F2FE approach is as effective in improving practices as the initial training provided by 

extension services. 
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Somewhere between these two views is the perspective provided by Feder and 

Savanstano (2006). These authors find that farmers are more inclined to learn from peer 

farmers who are slightly superior to them, but not excessively so. Referring to Rogers (1995), 

Fisher et al. (2018) also share this view and discuss the differential roles of homophily and 

heterophily networks as follows: 

“[h]omophilous and heterophilous networks have distinct and complementary roles in 
the diffusion of innovations. Heterophilous networks, such as that between lead and 
follower farmers, are more important in triggering awareness of a new technology, 
because new ideas most often enter a system through individuals who have higher 
status and are more innovative. Homophilous networks are, however, more useful than 
heterophilous ties in persuading potential adopters of the merits of the innovation […] 
If F2FE is to have a greater role in encouraging follower farmers to adopt innovations 
it may be necessary to identify lead farmers that are capable and motivated to train 
other farmers but not too socially distant from the target population of farmers in terms 
of personal characteristics and innovativeness.” (pp. 321–322) 

As discussed by Fisher et al. (2018), if lead farmers are more suitable as entry points to 

disseminate new information, but ordinary farmers are more suitable to the wider diffusion of a 

specific technology, compromising these two views would be potentially the most effective 

approach. That is, an approach wherein lead farmers receive initial training to train new 

technologies to socially proximate farmers who are slightly more capable than ordinary 

farmers. Then, the latter set of farmers teaches the same technologies to other farmers 

comprising the majority of the community. This argument can be reinforced if the new 

technology is complex, as discussed in the previous section. This stepwise approach is exactly 

the case presented by Nakano et al. (2018b) in Tanzania, where 20 lead farmers were initially 

selected and trained in IRCPs. The trained lead farmers were responsible for training five other 

farmers close to them, who were then encouraged to diffuse the improved practices to other 

ordinary farmers. The study found that the yield gap between lead and intermediary farmers, as 

well as other ordinary farmers, widened immediately after the training because the former had 
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adopted new practices faster than the latter. However, intermediary farmers soon caught up 

with the lead farmers and ordinary farmers caught up belatedly with the lead and intermediate 

farmers. Eventually, the yield gap among these groups gradually declined. 

However, Davis et al. (2016) criticize Nakano et al.’s (2018b) study for relying on 

recall data on rice yield in the past and for the small sample size. Thus, the effectiveness of 

such a stepwise technological diffusion path would be worth investigating in other contexts to 

examine its external validity. 

 

4.3 Incentivizing farmer-trainers 

Aside from the issue of selection of best farmer-trainers, increasing attention has beenpaid to 

the question of how to motivate farmer-trainers to maximize technology diffusion. Generally, 

in the lead-farmer approach, the selected farmer-trainers do not receive any monetary rewards. 

Because the training of other farmers entails a cost of efforts for communication and 

demonstration, the farmer-trainers sometimes fail to perform the expected role and function in 

disseminating information to other farmers (Ragasa, 2019). Regardless of whether they are 

lead or ordinary farmers, well-motivated farmer-trainers might be key to improving knowledge 

diffusion and adoption of new technologies and practices by fellow farmers (Fisher et al., 

2018; Holden et al., 2018). Recent studies also experimentally reveal the relevance of the 

provision of material and financial incentives. 

For example, Shikuku et al. (2019) investigate the role of private and social material 

rewards in improving the efforts of farmer-trainers, and whether their behavior changes by 

pro-social preferences. A private reward (e.g., a weighing scale) is secretly provided to a 

farmer-trainer if the technical knowledge of other farmers surpasses the threshold level. A 

social reward (the same weighing scale) is provided to a village chief with a public 

announcement that the device is gifted in recognition of a farmer-trainer’s performance. The 

results show that the provision of social rewards has a positive and significant impact on 
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farmer-trainers’ experimentation and diffusion efforts, which has a larger impact than the 

provision of private rewards. These effects remain, regardless of the pro-social preference of 

farmer-trainers. Note that because this study assumes farmer-trainers are better extension 

agents if they are similar to other farmers, they are selected from among farmers who are not 

starkly different from ordinary farmers in terms of wealth, education, and landholdings. 

BenYishay and Mobarak (2019) provide another experimental evidence to prove that 

offering small incentives to farmer-trainers based on knowledge and the adoption rate of other 

farmers significantly increases farmer-trainers’ efforts to communicate with other farmers. 

Moreover, it also improves their own experimentation to demonstrate the input level and yield 

outcomes. Interestingly, this incentive scheme works only for farmer-trainers who are selected 

from among ordinary farmers, but it does not work well for farmer-trainers selected from lead 

farmers. According to the authors, ordinary farmers are more sensitive to incentives because it 

is easier for them to convince other farmers owing to similarities among them. Thus, it is easier 

to reach the required number of adopters to receive the incentives. Though not mentioned in 

their study, another interpretation can be that ordinary farmers would be better extrinsically 

incentivized to increase their efforts, whereas such extrinsic incentives may not be effective or 

may even hurt lead farmers when they are already intrinsically motivated. Indeed, motivation 

of lead farmers selected by communities is generally not financial rewards, but to improve 

their own farming knowledge and to help others based on altruism (Kiptoto et al., 2016). 

Though the provision of material and financial incentives can increase the 

effectiveness of F2FE systems, how such extension systems attain scalability is disputed. As 

Shikuku et al. (2019) note, collection of data on others’ knowledge of new technology and its 

adoption is likely to be prohibitively expensive. Takahashi et al. (2019) provide evidence that 

F2FE systems can potentially work without any financial incentive to farmer-trainers, which 

makes the cost-effectiveness of performance-based incentive schemes questionable. 

Nonetheless, it is also important to note that the Takahashi et al. (2019) study was conducted in 
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a very unique setting where information exchange between trained and non-trained farmers 

was encouraged after confirmation of the positive impact of the rice-growing technology 

package taught in the training and where this was announced this to all the farmers under study. 

As Kijima (2019) rightly points out, ordinary farmers who receive training (famer-trainers) 

would have little reason to actively teach technologies to and monitor activities of fellow 

farmers unless incentives are provided. It is thus fellow (non-trained) farmers that should take 

the initiative to seek new information. In this sense, the existence of profitable technology 

would need to be informed to as many farmers as possible, which is likely to increase 

information-seeking behavior in non-trained farmers and thereby lead to wide technology 

diffusion.  

Given the lack of sufficient evidence and consensus, the question of whether financial 

and monetary incentives should be provided must be rigorously examined in the future 

research.6 

 

5. Concluding Remarks 

A review of the case studies on technology adoption provides support for the hypothesis that 

there are profitable technologies that are not diffused widely because of a weak extension 

system. Recent case studies commonly argue that desirable improved technologies, particularly 

in SSA, are management-intensive. They require integrated management of soil, nutrient, and 

water. Such technologies are likely to be complicated and their impacts are likely to be 

heterogeneous depending on agro-climates, soil quality, and famers’ abilities. For successful 

diffusion of new agricultural technology, effective extension systems are indispensable. For 

this reason, a surge in extension studies is warranted. 
                                            
6 The same applies to the case wherein farmer-trainers are selected through network-based targeting. 
Though this approach has potential, collecting detailed network data is expensive. Hence, its scalability 
and cost-effectiveness can be questioned. 
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One shortcoming of the studies on technology adoption is the lack of analysis of 

profitability of new technologies, especially in maize-based ISFM. Notably, it is extremely 

difficult to measure profit—that is, the return on the fixed factor of production—primarily 

because of the difficulty in imputing the value of unpaid family labor. It is often observed, 

particularly in the context of SSA, that when family labor cost is imputed by the prevailing 

market wage rate, the estimated residual profit is negative, indicating that this imputation 

method is inappropriate. This does not imply, however, that we do not have to estimate profit, 

because we cannot judge the viability and scalability of new technology without estimating 

profits. A practical solution is to assume that the estimated profit is not a cardinal, but an 

ordinal number. That is, it is not its absolute value, but its relative values that may be useful for 

assessing changes and differences in profitability. Another solution is a collaboration between 

agricultural economists and scientists, particularly agronomists, to experiment combinations of 

technologies and input uses in order to estimate the profits of various technologies under a 

variety of external environments.  

Diffusion studies in general do not carefully assess the profitability of a technology 

under examination, except with a few exceptions. Yet, it is absurd to examine the adoption of 

new technology and the role of social information network if the technology itself is not 

profitable. Another difficulty is the absence of interactions with case studies of technology 

adoption. Though case studies recommend integrated farming systems or “packages” of new 

inputs and management practices, still many diffusion studies focus only on a single 

technology, such as improved seed variety, improved planting method, and use of compost. We 

recommend closer collaborations between the two groups of economists interested in these 

intimately related issues. 

However, criticisms against the diffusion studies discussed above do not deny their 

significant contributions to the literature on technology adoption and diffusion. The question 

raised by these studies about the information channels has been neglected for long in the 
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economics literature, yet it is pertinent for the establishment of effective extension systems. 

Because information on new technology is a “local public good,” we believe that a 

public-sector extension system is needed. Because the public extension system is often 

inefficient, it is desirable to use farmer-trainers who are trained by extension workers. The 

critical questions are what types of farmers are appropriate for farmer-trainers and whether 

incentives should be given to them. 

Given the heterogeneous impacts of new technology, providing training to outstanding 

key farmers may not lead to wider adoption of new technology by ordinary farmers. However, 

although ordinary farmers have many peers who are willing to use the same technology, they 

are less capable than lead farmers in learning new and complicated technology. If desirable 

technology is complicated, as is likely to be the case in SSA, it may well be that 

farmer-trainers ought to be entrepreneurial key farmers. They are likely to disseminate new 

information to their peers, whose ability may be above the average in the rural community, 

even if they do not receive particular rewards. These peers may, in turn, further disseminate 

new information to less capable peers. On the other hand, if the desirable technology is simple 

and the identification of “ordinary farmers” with relatively large network connectivity is not 

costly, the best strategy may be to select ordinary farmers as farmer-trainers. Note, however, 

that ordinary farmers may have to be incentivized to serve as effective extension agents. Or, it 

may be more practical to provide information about technology to ordinary farmers to 

stimulate them to search for such new information. Judging from the extant literature it is too 

soon to present an optimum extension system with finality. Further research on the role and 

effectiveness of trainer-farmers in the diffusion of new technologies in a variety of contexts is 

thus necessary. 
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Table 1. Number of published papers on agricultural technology adoption in developing 
countries 

  Journals on development 
economics 

Journals on agricultural 
economics Total 

Regions    
Africa 60 149 209 
South Asia 19 13 32 
Southeast Asia 5 15 20 
Northeast Asia 5 6 11 
Latin America 2 6 8 
Middle East 0 1 1 
Total 91 190 281 
    
Crops    
Maize 16 50 66 
Rice 13 20 33 
Legume 3 11 14 
Maize–legume  2 3 5 
Bt cotton  3 9 12 
Cassava  1 4 5 
Banana 0 4 5 
Wheat 1 5 5 
Others 10 33 43 
Not specified 41 51 92 
Total 90 190 280 
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Table 2. Recent estimates of adoption of improved varieties in developing countries 

Authors Country & 
year Varieties Adoption 

rates Determinants of adoption Impact on 
production 

Impact of improved varieties on 
welfare indicators 

Improved varieties             
Zeng et al. (2015) Ethiopia in 

2010/11 
Improved maize 
(OPVs & hybrid) 

39.1% of 
maize area 

  47.6-63.3% more 
yield & 23.1-27.8% 
more cost increase 
than traditional 
varieties 

Adoption reduces poverty headcount 
ratio, by 0.8-1.3%. 

Zeng et al. (2017) Ethiopia in 
2010/11 

Improved maize 
(OPVs & hybrid) 

39.1% of 
maize area 

    Additional 0.25 hectare of improved 
maize increases child height-for-age 
& weight-for-age by 0.257 standard 
deviation (SD) & 0.176 SD 
respectively. Impact is larger for 
children with poorest nutrition 
outcomes. 

Suri (2011) Kenya in 
1997, 1998, 
2000, 2002, 
& 2004 

  65.8% in 
1997 
60.4% in 
2004 

There is heterogeneity in returns 
across the sample farmers. 
Farmers with high net returns 
adopted hybrid seeds & farmers 
with low net returns did not. 
Supply & infrastructure 
constraints such as long travel 
time to seed & fertilizer 
distributors become high costs for 
farmers & constraints of adoption. 

    

Mathenge et al. (2014) Kenya, in 
1997, 2000, 
2004, 2007, 
& 2010. 

Hybrid maize 68.1% of 
maize area in 
2000 
61.1% in 
2004,  
73.1% in 
2007 
82.0% in 
2010 

    Adoption leads to 7% increase in 
household income, 9% increase in 
assets, 2.9% decrease in poverty gap 
in all areas.  
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Smale & Olwande (2014) Kenya in 
2009/10 

Hybrid maize 82.80% Male-headed households with 
more education, assets, & 
landholdings tend to plant hybrid 
seeds more. The seed-to-grain 
price ratio is negatively related to 
hybrid area planted. 

    

Bezu et al. (2014) Malawi in 
2004, 2007, 
& 2009 

Improved maize 
(OPVs & hybrid) 

48.6% of 
maize area in 
2004,  
55.4% in 
2007 
45% in 2009 

The amount of improved maize 
planted is increased with access to 
subsidized inputs, education, land 
holdings, & male labor. Higher 
rainfall variability discourages 
planting improved maize.  

  1% increase in the area planted 
modern varieties would increase 
household income by 0.48%, the 
maize available consumption by 
0.34%, & asset wealth by 0.24%. 

Lunduka et al. (2012) Malawi in 
2010 

Modern maize (OPVs 
& hybrid) 

76% Farmers value high yield & early 
maturity of modern varieties & 
they also value the storability, 
taste & processing traits of local 
varieties. Cash constraints hinder 
them from growing hybrid. 
Receipts of maize seed or 
fertilizer vouchers enhances 
adoption of modern seeds but this 
effect does not last long. 

    

Smale & Mason (2014) Zambia in 
2002/3 & 
2006/7 

Hybrid maize 37.4% in 
2002/3 
42.6% in 
2006/7 

    Each kg of hybrid is associated with 
a 32,230 ZMK increase in total 
household income & decrease in 
severity of poverty that is 0.17 
percentage points. At the mean, each 
kg of hybrid is associated with a 
29,245 ZMK increase in total 
productive assets. 

Khonje et al. (2015) Zambia in 
2012 

Any improved maize 63.8% Adoption is related to education, 
group membership, access to 
extension & market, household 
size, owning oxen & assets.  

  Adoption increases crop income by 
20 percentage points & food security 
by 2-21 percentage points & reduce 
the probability of poverty by 11-21 
percentage points. 

Smale et al. (2015) Zambia in 
2011 

Hybrid maize 68%     They interviewed to women. 
Adoption Increases the number of 
food groups & the number of food 
groups that are sources of vitamin A 
for women & children. 
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Becerril & Abdulai (2010) Mexico in 
2010 

Improved maize 
(creolized, hybrid, 
OPVs) 

Chiapas: 
80.2% 
Oaxaca: 
31.9% 

    Adoption increased household per 
capita expenditure by 136-173 pesos 
on average & reduced the probability 
of falling in poverty by about 
19-31%. 
Small farmers benefit more from 
adoption of improved varieties than 
large farm.  

Verkaart et al. (2017) Ethiopia in 
2006/7, 
2009/10, & 
2013/14 

Improved chickpea 31.2% in 
2006/7 
63.0% in 
2009/10 
79.0% in 
2013/14 

    10% increase in the area planted with 
improved chickpea increases per 
capita income by 12.6% & total 
income by 12.3% & reduces the 
probability of being below the 
median poverty line by 3.9%.  

Michler et al. (2018) Ethiopia in 
2007, 2010, 
& 2014 

Improved chickpea 31.1% in 
2007 
63.0% in 
2010 
79.1% in 
2014 

  There is no impact 
on yield compared to 
local varieties. 

Adoption reduces production costs & 
thus increases farm profits. 

Asfaw et al. (2012a) Tanzania & 
Ethiopia in 
2008 

Tanzania: improved 
pigeonpea 
Ethiopia: improved 
chickpea 

Tanzania: 
improved 
pigeon peas: 
32% 
Ethiopia: 
improved 
chick peas: 
33% 

Access to local supply of seed, 
access to information & 
perception about new varieties are 
key constraints for adoption. 

  Adaptors of improved pigeon peas in 
Tanzania & chick peas in Ethiopia 
have significantly higher 
consumption per adult equivalent.  

Asfaw et al. (2012b) Tanzania in 
2008 

Improved pigeonpea 33% Inadequate local supply of seed & 
access to information, & 
perception about new varieties are 
key constraints for adoption. 

  Adoption increases per capita 
consumption by 18-31 percentage 
points, reduces the depth of poverty 
by 8-10 percentage points, & reduces 
severity of poverty by 4.4-8.1 
percentage points. 
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Kassie et al. (2011) Uganda in 
2006 

Improved groundnut 55.6% Adoption is constrained by 
uneven availability of improved 
varieties, lack of development of 
market infrastructure, & poor 
access to information & extension 
services. 

  Adoption of improved groundnut 
significantly increases net crop 
income by 130-254 USD & reduces 
poverty headcount index by 7-9 
percentage points. 
The gain in net crop income is 
especially higher for households in 
the bottom 3 quintiles in farm size & 
in the top 2 quintiles in education. 
The poverty impact if greater for 
households in the bottom 2 quintiles 
in farm size. 

Shiferaw et al. (2015) Uganda in 
2006 

Improved groundnut 58.7% Adoption is constrained by 
imperfect markets for information 
& access to improved seed & 
credits. 

    

Manda et al. (2019) Nigeria in 
2017 

Improved cowpea 41.5%     Adoption increases per capital 
income & asset by 17 & 24 
percentage points respectively. It 
also reduces income poverty & asset 
poverty by 5 percentage points. 

Kijima et al. (2011) Uganda in 
2004 & 2006 

NERICA rice 65.7% in 
2004 
35.7% in 
2006  
in NERICA 
growing area 

    Though NERICA improved food 
security & reduce poverty in 2002, 
more than half of the NERICA 
adopters in 2004 deadapted in 2006. 
This is partly due to low profitability 
of NERICA relative to alternative 
crops in variable rainfall areas. Low 
profitability could be due to weak 
dissemination of appropriate 
information on seed production to 
rice farmers. 

Villano et al. (2015) Philippines in 
2006/7 

Certified rice seeds 30% Access to extension services & 
credits encourage adoption. 

Adopters have about 
11% output 
advantages 
compared with 
non-adopters. 

Adoption increases net income in 
rice farming. 

Cavatasso et al. (2011) Ethiopia in 
2002/03 

Modern sorghum 
varieties 

11.00% While farmers experience 
moderate production stores & 
climatic risk tend to adopt MVs, 
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those who are most vulnerable to 
extreme weather events tend to 
use the landraces. This implies 
that MVs are not effective means 
to cope with the catastrophic risk. 

Smale et al. (2018) Mali in 
2014/15 

Improved & hybrid 
sorghum 

22%     Adoption of hybrid widens the range 
of food item consumed, reduces the 
share of sorghum in food purchase & 
contributes to a greater share of the 
harvested sorghum sold.   

Shiferaw et al. (2014)  Ethiopia in 
2011 

Improved wheat 29.55%     The average treatment effect on the 
treated are 976 ETB & 2.7 
percentage points for food 
consumption & binary food security 
outcome variables respectively. The 
average treatment effect on the 
untreated are 861 ETB & 4.5 
percentage points for food 
consumption & binary food security 
outcome variables respectively.  

Stress-tolerant varieties             

Kostandini et al. (2013) Angola, 
Benin, 
Ethiopia, 
Ghana, 
Kenya, 
Malawi, 
Mali, 
Mozambique, 
Nigeria, 
Tanzania, 
Uganda, 
Zambia, 
Zimbabwe 
from 2001 to 
2006. 

Drought-tolerant 
maize 

5% of maize 
area in 2006 
in Angola, 
15% in 
Benin, 19% 
in Ethiopia, 
25% in 
Ghana, 72% 
in Kenya, 
15% in Mali, 
22% in 
Malawi, 11% 
in 
Mozambique, 
25% in 
Nigeria, 18% 
in Tanzania, 
35% in 
Uganda,  

    Adoption can generate USD 362-590 
million by 2016. 0.01-4.29% 
reduction in poverty by adopting 
drought tolerant maize by 2016. 
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Katengeza et al. (2019) Malawi in 
2006, 2009, 
2012, & 2015 

Drought-tolerant 
maize 

3% in 2006 
25% in 2009 
40% in 2012 
43% in 2015 

Previous early season dry spells & 
access to seed subsidy increases 
adoption & adoption intensity.  

    

Yamano et al. (2018) Bangladesh 
in 2013 & 
2015 

Submergence-tolerant 
rice 

12.4% in 
2012 
30.2% in 
2013 
38.4% in 
2014 
37.5% in 
2015  
in the area 
where ST 
rice was 
distributed. 

Experience of submergence in the 
previous year increases adoption. 
This effect is larger for farmers 
whose neighbors were early seed 
recipients. 

    

Yorobe et al. (2016) Philippines in 
2011 & 2012 

Green super rice 
(GSR: high-yielding 
with tolerance with 
multiple abiotic 
stresses) 

41% in 2012 
in the area 
where GSR 
rice was 
distributed. 

 Adoption increases 
yield particularly at 
the high rainfall 
levels. 

Adoption increases net farm income 
particularly at the high rainfall levels. 
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Table 3. Recent estimates of adoption of fertilizer, crop-fertilizer response rates and value-cost ratios in developing countries 

Authors Country & year Adoption rates Quantity of nitrogen 
adopted  Response rate Value-cost ratio 

Sheahan et al. (2013) Kenya in 1997, 2000, & 
2004, 2007, & 2010 

64% of maize area with 
commercial fertilizer in 
1997 
73% in 2000 
79% in 2004 
83% in 2007 
76% in 2010 

26 kg N/ha in 1997 
30 kg N/ha in 2000 
32 kg N/ha in 2004 
35 kg N/ha in 2007 
40 kg N/ha in 2010   

APP=21 kg maize /kg N 
MPP=17 kg maize /kg N 

AVCR= 1.3-3.7 
MVCR= 1.0-4.6 

Matsumoto & Yamano (2013) Kenya in 2004 & 2007 
Uganda in 2005 

74% in Kenya 
3% in Uganda 

18.41 kg N/ha 
0.76 kg N/ha 

MPP=14.1-19.8 kg hybrid maize /kg N 
in Kenya 
MPP=23.4-25 kg hybrid maize /kg N 
in Uganda 

MVCR= 1.05-1.24 in 
Kenya (hybrid maize) 
MVCR= 0.74-1.05 in 
Uganda (hybrid maize) 

Liverpool-Tasie (2017) Nigeria in 2010 & 2012 
in rice plots 

  61.7 kg N/ha in 2010 
59.1 kg N/ha in 2012 

APP=8.7-8.8 kg rice/ kg N 
MPP=8.9-9.0 kg maize/ kg N 

  

Liverpool-Tasie et al. (2017) Nigeria in 2010 & 2012 
in maize plots 

  40.2 kg N/ha in 2010 
46.6 kg N/ha in 2012 

APP=7.6-7.7 kg maize /kg N in 2010 
APP=7.56 kg maize /kg N in 2012 
MPP=7.75 kg maize /kg N in 2010 
MPP=7.71 kg maize /kg N in 2012 

% of maize plots with 
AVCR≧1 :51% in 2010: 
56% in 2012 
MVCR≧1 :49% in 2010: 
51% in 2012 

Burke et al. (2017) Zambia in 2004 & 2008     APP=2.6-5.0 kg maize/kg top dressing 
fertilizer depending on soil type and 
tillage methods 

AVCR of basal application 
= -1.4-5.3 depending on 
pH of soil 

Burke et al. (2019) Zambia in 2012     APP= insignificant (0) to 7 kg maize/ 
fertilizer kg depending on soil 
characteristics 

AVCR= 1-2 

Source: Reproduced table 1 in Jayne et al. (2019) 
* APP: average physical products of fertilizer, MPP: marginal physical products of fertilizer, AVCR: average value cost ratios, & MVCR: marginal value cost 
ratio 
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Figure 1. Changes in maize yields in SSA, South Asia, Southeast Asia, South America, 
and the average of top five countries of yield in SSA 

 
Source: FAOSTAT (2019) 
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Figure 2. Changes in rice yields in SSA, South Asia, Southeast Asia, South America, 
and the average of top five countries of yield in SSA 

 
Source: FAOSTAT (2019) 
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Abstract(in Japanese) 

要約 

 

低所得国、特にサハラ砂漠以南のアフリカ(SSA)では、農業の生産性の停滞や食糧の慢

性的不足が続いており、こうした地域における新技術の採用やその生産性への効果に

ついて研究者から大きな関心が寄せられている。興味深いことに、最近になって SSA

でも「緑の革命」の萌芽が、先進地域を中心にして見られるようになった。また最近

の多くの研究では、穀物生産の収量を持続的に向上させるためには、土壌の肥沃土の

維持を含む「総合的な農業経営」が重要であることが強調されるようになった。他方、

過去 10 年間においては、農業技術の普及における社会的ネットワーク、あるいは農民

から農民への知識の伝達の役割についての関心が高まってきた。こうした研究では、

伝統的な政府による普及システムよりも効率的な普及システムが探求されている。本

論文は、最近の農業技術の採用とその効果に関する事例研究と、農業普及に関する研

究とを包括的にレビューし、何が共通する普遍的発見であるか、何が分析上の弱点か、

さらに今後究明すべき研究課題は何かを、明らかにしようとするものである。 

 

キーワード：技術採用、生産性への効果、農業普及システム、技術普及 
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